Nombre

Infos
La notion de nombre en linguistique est traitée à l'article Nombre grammatical. ---- Un nombre est un concept permettant d'évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d'ordonner des éléments par une numérotation. La complexité de cette notion est telle que certains dictionnaires s'avouent impuissants à la définirLe Petit Robert de la langue française et le Trésor de la Langue Française Informatisé rapportent q
Nombre

La notion de nombre en linguistique est traitée à l'article Nombre grammatical. ---- Un nombre est un concept permettant d'évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d'ordonner des éléments par une numérotation. La complexité de cette notion est telle que certains dictionnaires s'avouent impuissants à la définirLe Petit Robert de la langue française et le Trésor de la Langue Française Informatisé rapportent que « le nombre est une des notions fondamentales de l'entendement qu'on ne peut définir. » Le Petit Larousse illustré soutient que le nombre « ne peut faire l'objet d'une définition stricte ».. En mathématiques, cette difficulté est partiellement résolue par la proposition : « un nombre est un élément d'un ensemble de nombres »Stella Baruk, Dictionnaire de mathématiques élémentaires, Éditions du Seuil, 1992.. Ces ensembles ou classes de nombres étendent la notion fondamentale de nombre entier naturel de diverses manières pour définir des opérations, résoudre des équations, donner un sens à certaines approximations ou appréhender l'infini. Le nombre est à distinguer de son écriture, composée d'un ou plusieurs chiffres et dépendante du système de numération employé.

Notions à distinguer

; Chiffre Un chiffre est un caractère utilisé à l'écriture d'un nombre ou d'un numéro. L'erreur la plus fréquente est de confondre le chiffre avec le nombre. Les chiffres généralement utilisés pour l'écriture des nombres sont : . ; Nombre Les nombres sont utilisés pour résoudre des problèmes faisant intervenir des valeurs. Mais attention, un nombre n'est pas une quantité. C'est un objet mathématique qui répond à des lois précises. ; Nombre cardinal Un nombre cardinal est un type de nombre particulier utilisé pour le dénombrement des ensembles. Il ne faut pas les confondre avec les adjectifs numéraux cardinaux. ; Nombre ordinal Un nombre ordinal est un type de nombre particulier utilisé pour marquer l'ordre des éléments d'un ensemble. Il ne faut pas les confondre avec les adjectifs numéraux ordinaux. L'énumération avec les nombres ordinaux commence par « 0 », tandis qu'avec les adjectifs numéraux ordinaux elle commence par premier ou « 1 ». ; Numéro Un numéro est simplement une combinaison de chiffres qui ne respecte pas nécessairement une énumération et joue généralement le rôle d'une étiquette numérique

Types de nombres

Il existe différents types de nombres. Les nombres les plus familiers sont les entiers naturels : 0, 1, 2, 3, … éléments de l'ensemble \N, et utilisés pour le dénombrement. Si les entiers négatifs sont inclus, on obtient l'ensemble des nombres entiers relatifs \mathbb. Il existe également l'ensemble des nombres décimaux noté \mathbb. Si d appartient à \mathbb, alors d = a\cdot 10^p où a appartient à \mathbb et p appartient à \mathbb. La division d'un entier relatif par un entier relatif non nul forme un nombre rationnel. L'ensemble de tous les nombres rationnels est noté \mathbb\, . Il résulte de la réunion de l'ensemble des nombres à développement décimal fini (les nombres décimaux) et de celui des nombres périodiques. Si, dans l'ensemble, outre les éléments de \mathbb, on inclut tous les développements décimaux infinis et non périodiques, on obtient l'ensemble des nombres réels, noté \R. Tous les nombres réels qui ne sont pas rationnels sont appelés nombres irrationnels. \R est la réunion de l'ensemble des nombres algébriques (les racines de polynômes à coefficients rationnels) et de l'ensemble des nombres transcendants. Les nombres réels peuvent être étendus aux nombres complexes, dont l'ensemble est noté \mathbb, qui est un corps algébriquement clos dans lequel chaque polynôme à coefficients complexes peut être complètement factorisé. Nous avons donc une hiérarchie d'ensembles : :\N\sub\mathbb\sub\mathbb\sub\mathbb\sub\R\sub\mathbb Les nombres complexes peuvent, à leur tour, être étendus aux quaternions, mais la multiplication des quaternions n'est plus commutative. Les octonions, à leur tour, étendent les quaternions, mais cette fois, l'associativité est perdue. Les sédénions étendent à leur tour l'ensemble des octonions. En fait, les seules algèbres de division associatives à dimension finie sur \R sont les nombres réels, les nombres complexes et les quaternions. Les éléments des corps de fonctions algébriques de caractéristique finie ont été souvent interprétés de plusieurs manières comme une sorte de nombres par les théoriciens des nombres. 1+\cfrac 3+\cfrac 5+\cfrac7+\dotsb = \frac\sqrt e - 1

Histoire

Les nombres sont apparus dans cet ordre :
- Les entiers naturels,
- Les nombres rationnels positifs,
- L'invention du zéro,
- Les entiers relatifs,
- Les nombres rationnels,
- Les nombres irrationnels et les nombres réels,
- Les nombres complexes,
- Les nombres hypercomplexes (quaternions),
- Les nombres p-adiques,
- Les nombres réels transcendants et les nombres réels algébriques,
- Les nombres transfinis, constitués des ordinaux et cardinaux
- Les nombres hyperréels,
- Les nombres réels calculables,
- Les nombres surréels et pseudo-réels. Ce n'est pas fortuit : on passe de la façon la plus simple de mesurer à des techniques beaucoup plus élaborées. La compréhension des limites des nombres rationnels et de la nécessité des nombres irrationnels fut particulièrement douloureuse pour les pythagoriciens ; on dit même que cela scella la fin de cette École. Les nombres complexes se sont imposés dans un premier temps comme un argument spécieux mais efficace pour résoudre les équations polynomiales (d'où le vocable d'« imaginaire » pour désigner certains d'entre eux), avant de finalement être reconnus comme des nombres à part entière. Les nombres hypercomplexes furent inventés par Hamilton (quaternions) puis par Cayley (octonions) et les sédénions par la construction de Cayley-Dickson. À chaque composante d'un nombre hypercomplexe, on peut associer une base à plusieurs dimensions (4 pour les quaternions, 8 pour les octonions et 16 pour les sédénions). Il existe aussi les biquaternions. L'apparition des nombres p-adiques est liée à la notion de valeur absolue, et sont très utilisés en théorie des nombres. Les nombres hyperréels furent conçus pour résoudre certains problèmes de l'analyse et leur création par Abraham Robinson permit le développement de l'analyse non-standard. Les nombres pseudo-réels sont très semblables à l'ensemble plus vaste des hyperréels, mais la construction est différente. Les opérations arithmétiques sur les nombres, telles que l'addition, la soustraction, la multiplication et la division sont généralisées dans la branche des mathématiques appelée algèbre abstraite dans laquelle on obtient les groupes, les anneaux et les corps.

Voir aussi

- Numération ;
- Construction du nombre chez l'enfant
- Système de numération ;
- Mathématiques ;
- Fraction ;
- Les dix premiers nombres entiers ou chiffres, qui servent à former tous les nombres dans la numérotation décimale : zéro, un, deux, trois, quatre, cinq, six, sept, huit, neuf ;
- Nombre premier ;
- Gogol ;
- Nombres en français ;
- Nom des grands nombres ;
- Nombres dans le monde ;
- Liste des nombres ;
- Les nombres ordinaux et cardinaux ;
- Table des diviseurs
- Nombre grammatical.

Notes et références

==
Sujets connexes
Abraham Robinson   Addition   Adjectif numéral   Algèbre   Anneau (mathématiques)   Arthur Cayley   Associativité   Base (algèbre linéaire)   Biquaternion   Chiffre   Commutativité   Concept   Construction du nombre chez l'enfant   Corps (mathématiques)   Corps algébriquement clos   Division   Dénombrement   Développement décimal   Ensemble   Entier naturel   Entier relatif   Fraction   Georges Ifrah   Gogol (nombre)   Grandeur   Groupe (mathématiques)   Infini   Liste des nombres   Mathématiques   Nom des grands nombres   Nombre algébrique   Nombre cardinal   Nombre complexe   Nombre décimal   Nombre grammatical   Nombre hypercomplexe   Nombre hyperréel   Nombre irrationnel   Nombre ordinal   Nombre p-adique   Nombre premier   Nombre rationnel   Nombre réel   Nombre réel calculable   Nombre surréel et pseudo-réel   Nombre transcendant   Nombre transfini   Nombres dans le monde   Nombres en français   Numération   Objet   Octonion   Polynôme   Quaternion   Soustraction   Système de numération   Sédénion   Table des diviseurs   Théorie des nombres   Valeur absolue   William Rowan Hamilton  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^