Physique nucléaire

Infos
La physique nucléaire est la science qui étudie non seuleument le noyau atomique en tant que tel (élaboration d'un modèle théorique) mais aussi la façon dont il interagit lorsqu'une particule arrive "à proximité" (l'ordre de grandeur est 1E-12 cm, on parle couramment en physique nucléaire de section efficace dont l'unité est le barn soit 1E-24 cm²) du noyau (obtention de résultats expérimentaux). Après un bref rappel historique, cet article se consacre à décrire
Physique nucléaire

La physique nucléaire est la science qui étudie non seuleument le noyau atomique en tant que tel (élaboration d'un modèle théorique) mais aussi la façon dont il interagit lorsqu'une particule arrive "à proximité" (l'ordre de grandeur est 1E-12 cm, on parle couramment en physique nucléaire de section efficace dont l'unité est le barn soit 1E-24 cm²) du noyau (obtention de résultats expérimentaux). Après un bref rappel historique, cet article se consacre à décrire :
- la structure nucléaire, qui vise à comprendre comment les nucléons (protons et neutrons) interagissent pour former le noyau.
- les mécanismes des réactions nucléaires dont le but est de décrire les différentes façons qu'ont les noyaux d'interagir : fission, fusion, diffusion (élastique, inélastique), radioactivité...
- les domaines d'applications de la physique nucléaire : de la médecine à l'astrophysique, en passant par la production d'énergie, tous ces domaines d'activité exploitent la physique des interactions rayonnement-matières.
- les organismes de recherche en physique nucléaire, en France et dans le monde.

Introduction

La matière est constituée de molécules, elles-mêmes constituées d'atomes. Ces atomes sont formés d'un noyau central entouré par un nuage électronique. La physique nucléaire est la science qui s'intéresse à l'ensemble des phénomènes physiques faisant intervenir le noyau atomique. En raison de la taille microscopique de celui-ci, les outils mathématiques utilisés s'inscrivent essentiellement dans le cadre du formalisme de la mécanique quantique. Le noyau atomique est constitué de nucléons, qui se répartissent en protons et en neutrons. Les protons sont des particules qui possèdent une charge électrique élémentaire positive, alors que les neutrons sont des particules neutres. Ils n'ont qu'un moment magnétique, et ne sont donc que peu sensibles au champ électromagnétique, contrairement aux protons. Si l'on assimilait le noyau atomique à une sphère dure, le rayon de cette sphère serait de quelques fermis, 1 fermi valant 10-15 mètres (1 fermi = 1 femtomètre). Les noyaux possédant la même valeur de Z, c'est-à-dire le même nombre de protons, et n'ayant pas le le même nombre de neutrons sont appelés isotopes.

Le noyau dans l'Histoire

Jusqu'au tournant du , on a cru que les atomes étaient les constituants ultimes de la matière. La découverte de la radioactivité en 1896 par Henri Becquerel et les études qui suivirent, en particulier par les époux Curie, commencèrent de suggérer que les atomes étaient peut-être eux-mêmes des objets composés. Comment, sinon, la matière pourrait elle émettre spontanément des particules comme dans le cas de la radioactivité alpha ? C’est en 1911 que Rutherford découvrit que les atomes semblaient effectivement être des objets composés. En analysant la diffusion de particules alpha émises par une source radioactive à travers une feuille d'or, il en vint à conclure que le plus simple semble de supposer que l'atome contient une charge centrale distribuée dans un volume très petit ("it seems simplest to suppose that the atom contains a central charge distributed through a very small volume...", Philosophical Magazine, Series 6, vol. 21, May 1911, p. 669-688). Le modèle de Rutherford de l'atome était donc un noyau central possédant une charge électrique entouré par des électrons maintenus en orbite par l'interaction électromagnétique. Il avait déjà été proposé en 1904 par Nagaoka. En 1919, Rutherford toujours découvre l'existence dans le noyau du proton, particule possédant une charge positive élémentaire e, mais possédant une masse beaucoup plus grande que celle de l'électron (qui lui a une charge électrique élémentaire négative). En 1932, Chadwick met en évidence l'existence du neutron, particule très semblable au proton, hormis le fait qu'il ne possède pas de charge électrique (d'où son nom). À la même période, Heisenberg propose que le noyau atomique est en fait constitué d'un ensemble de protons et de neutrons.

Structure nucléaire

L'interaction forte maintient la cohésion des nucléons au sein du noyau. C'est la plus intense des quatre forces fondamentales de la nature (d'où son nom). Elle se caractérise par le fait qu'elle est fortement attractive à courte distance (lorsque les nucléons se rapprochent très près l'un de l'autre), répulsive à "moyenne" distance, et s'annule à longue distance. Les protons étant des particules chargées, ils interagissent également via l'interaction coulombienne. Si le nombre de protons dans le noyau est important, cette dernière prend le pas sur l'interaction forte et les noyaux deviennent instables. La quantité d'énergie qui assure la cohésion du noyau est appelée énergie de liaison du noyau.

Les réactions nucléaires

Une réaction est dite nucléaire lorsqu'il y a modification de l'état quantique d'un ou plusieurs noyaux. Participent alors à la réaction protons et neutrons (notés respectivement p et n), mais également d'autres particules, tels les électrons e-, les positrons e+... Les réactions nucléaires peuvent être de plusieurs types. Pour ne citer que les plus importantes :
- la fission : un noyau lourd se brise en plusieurs fragments. C'est ce type de réaction qui est mis en œuvre dans les bombes atomiques de type A, et, dans un but plus pacifique, dans les centrales nucléaires.
- la fusion : plusieurs noyaux légers fusionnent. C'est le mode de production d'énergie des étoiles. La fusion nucléaire est à la source de la nucléosynthèse qui permet d'expliquer la genèse de tous les éléments du tableau périodique de Mendeleïev et de leurs isotopes. C'est également le type de réaction qui est utilisé dans les bombes dites à hydrogène. L'utilisation de la fusion à des fins de production d'énergie civile n'est pas encore maîtrisée. Sa maîtrise est l'objet du projet international ITER.
- la radioactivité : un noyau émet une ou plusieurs particules spontanément. On distingue les radioactivités \alpha, où un noyau d'hélium est émis; la radioactivité \beta où sont émis soit un électron et un anti-neutrino électronique (\beta^), soit un positron et un neutrino électronique (\beta^) et la radioactivité \gamma par laquelle un noyau perd son énergie par un rayonnement électromagnétique de haute énergie.
- réactions de knock-out ou spallation : des particules légères (neutrons par exemple) sont envoyées sur un noyau cible et expulsent un ou plusieurs nucléons de ce noyau.
- réactions de diffusion (élastique ou inélastique) : des particules légères ou des noyaux, qui constituent le projectile, sont envoyés sur un noyau cible mais de façon à éviter une collision frontale. Le projectile est dévié par la cible mais a modifié l'état de cette dernière. Dans le cas d'une diffusion élastique, l'énergie de la cible n'est pas modifiée, au contraire d'une diffusion inélastique.

Applications de la physique nucléaire

Astrophysique

La nucléosynthèse explique la fabrication dans l’Univers des divers noyaux qui le constituent actuellement. Deux processus bien distincts sont cependant nécessaires pour expliquer l'abondance des différents éléements chimiques dans l'univers :
- Dans une première phase, lors du Big Bang, sont formésà partir de l'hydrogène, les noyaux de H (deutérium), He, He et Li. Aucn élément plus lourd n'est synthétisé, car cette phase est relativement courte. Or, pour former des éléments plus lourds que le lithium, il est nécessaire d'avoir recours à une réaction faisant intervenir trois noyaux d'hélium, dite réaction triple alpha. Ce type de réaction est extrêmement difficile à réaliser et ne peut se faire que sur des période beaucoup plus longues que les quelques minutes de la nucléosynthèse primordiale.
- La suite de la nucléosynthèse se produit ainsi au cœur des étoiles. On parle alors de nucléosynthèse stellaire. Celle-ci se scince d'ailleurs en deux procédés : la nucléosynthèse lente, ayant lieu dans les étoiles, qui permet de synthétiser les éléments plus légers que le fer, puis la nucléosynthèse explosive, produite uniquement lors des explosions d'étoiles, appelées supernovae. On parle alors de nucléosynthèse explosive.

Archéologie

Médecine

La médecine nucléaire repose sur l'utilisation de sources radioactives et de l'interaction de ces sources avec les tissus humains. Cette interaction est exploitée à des fins de diagnostic (radiologie par exemple) ou de traitement (radiothérapie). À partir des années 1980 se sont développées les techniques d’imagerie par résonance magnétique nucléaire (IRM) qui font appel aux propriétés magnétiques des noyaux.

Production d'énergie

La production d'énergie nucléaire peut avoir deux origines : la fission d'un noyaux lourd (famille des actinides comme l'uranium) ou la fusion de noyaux légers (de type deutérium, tritium). La production d'énergie peut être :
- brêve et intense : c'est le principe d'une bombe nucléaire,
- contrôlée (à des fins de production civile mais aussi militaire).

Production d'énergie contrôlée

Actuellement, les industriels ne savent exploiter que l'énergie qui provient de la fission des noyaux lourds. L'énergie est ensuite utilisée :
- soit pour produire de l'électricité, c'est le cas des centrales nucléaires
- soit pour permettre de mouvoir un véhicule, particulièrement dans le domaine maritime (porte-avions, sous-marins à propulsion nucléaire) et de l'aérospatiale . L'utilisation de la fusion à des fins de production d'énergie civile n'est pas encore maîtrisée. Sa maîtrise est l'objet du projet international ITER.

Application militaire (bombe nucléaire)

Organismes de recherche en Physique Nucléaire

En France

- Commissariat à l'Energie Atomique (CEA)
- Grand Accélérateur National d'Ions Lourds (GANIL, Caen)
- Laboratoire de l’accélérateur linéaire (LAL, Orsay)
- Centre de spectrométrie nucléaire et de spectrométrie de masse (CSNSM, Orsay)
- Imagerie et modélisation en neurobiologie et cancérologie (IMNC, Orsay)
- SOLEIL synchrotron (Saclay)
- European Synchrotron Radiation Facility (ESRF, Grenoble)
- Institut Laue Langevin (ILL, Grenoble)
- Laboratoire Léon Brillouin (LLB, Orsay)
- Laboratoire National Henri Bequerel (Saclay)
- Centre d’études nucléaires (CENBG, Bordeaux Gradignan)
- Institut de physique nucléaire (IPN, Orsay, Villeurbanne)
- Laboratoire de Physique Corpusculaire (LPC Caen, Clermont-Ferrand)
- Institut pluridisciplinaire Hubert Curien (IPHC, Strasbourg)
- Laboratoire de physique nucléaire et de hautes énergies (LPNHE, Paris Jussieu)

En Europe

Dans le monde

- Oak Ridge National Labotory (ORNL)
- Los Alamos National Labotory (LANL)

Voir aussi

===
Sujets connexes
Arme nucléaire   Astrophysique   Atome   Atomes   Barn   Big Bang   Bombe A   Bombe H   Bombe à neutrons   Centrale nucléaire   Champ électromagnétique   Charge électrique   Deutérium   Diffusion des ondes   Diffusion élastique   Ernest Rutherford   Fer   Fermi   Fission nucléaire   Fusion   Fusion nucléaire   Henri Becquerel   Hibakusha   Hydrogène   Hélium   Interaction forte   Interaction élémentaire   Isotope   James Chadwick   Lithium   Loi de Coulomb   Marie Curie   Molécule   Mécanique quantique   Médecine   Médecine nucléaire   Neutrino   Neutron   Noyau atomique   Nucléon   Nucléosynthèse   Nucléosynthèse stellaire   Physique des particules   Positron   Proton   Radioactivité   Radiothérapie   Réaction triple alpha   Résonance magnétique nucléaire   Section efficace   Structure nucléaire   Supernova   Tritium   Werner Heisenberg  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^