Ensemble vide

Infos
En mathématiques, 'ensemble vide' est l'ensemble ne contenant aucun élément.
Ensemble vide

En mathématiques, 'ensemble vide' est l'ensemble ne contenant aucun élément.

Notation

L'ensemble vide peut être noté d'un rond barré \varnothing \, ou simplement , deux accolades ouvrantes et fermantes ne contenant rien. La notation ∅ a été introduite par le mathématicien français André Weil du groupe Bourbaki. À noter que l'unicode possède trois caractères distincts U+2205 (∅) pour l'ensemble vide, U+00D8 (Ø) lettre de l'alphabet norvégien, et U+2300 (⌀) représentant le diamètre d'un cercle. Ces trois caractères ont la forme d'un cercle barré par un trait allant du Sud-Ouest au Nord-Est. Il est plus aisé de les distinguer de la lettre Phi majuscule de l'alphabet grec (Φ), qui elle consiste en un cercle barré d'un trait vertical. On notera que le rond barré n'est pas non plus le zéro barré.

Propriétés

- Pour tout ensemble A, l'ensemble vide est un sous-ensemble de A :
-: ∀A ensemble, Ø ⊂ A
- Pour tout ensemble A, l'union de A avec l'ensemble vide est A :
-: ∀A ensemble, Ø ∪ A = A
- Pour tout ensemble A, l'intersection de A avec l'ensemble vide est l'ensemble vide :
-: ∀A ensemble, Ø ∩ A = Ø
- Le seul sous-ensemble de l'ensemble vide est l'ensemble vide lui-même. :
-: ∀A ensemble, A ⊂ Ø ⇒ A = Ø
- Le cardinal de l'ensemble vide est zéro, en particulier l'ensemble vide est fini :
-: Card(Ø) = 0 Les mathématiciens préfèrent parler de l`ensemble vide plutôt que d`un ensemble vide. En effet, dans la théorie des ensembles, deux ensembles sont égaux s'ils contiennent les mêmes éléments : ainsi, il ne peut y avoir qu'un ensemble ne contenant aucun élément.

Difficultés de la notion d'ensemble vide

L'ensemble vide ne correspond pas à rien ; c'est en fait un ensemble qui ne contient rien, mais en tant qu'ensemble il n'est pas rien. Ce point est souvent difficile à saisir au premier abord. On peut, afin de mieux comprendre, comparer un ensemble à un sac : un sac vide est vide, mais le sac en lui même existe. De même, la notation n'a pas le même sens que Ø. La dernière notation décrit un ensemble qui ne contient rien alors que le premier décrit un ensemble contenant un élément : l'ensemble vide. On peut, afin de mieux comprendre, reprendre l'analogie du sac vide. Un tiroir contenant un sac vide - - n'est pas vide - Ø - et contient bien un objet. On peut aussi être choqué par la première propriété ci-dessus, c'est-à-dire le fait que l'ensemble vide soit un sous-ensemble de n'importe quel ensemble A. D'après la définition d'un sous-ensemble, cela veut dire que pour tout élément x de Ø, x appartient à A. Raisonnons a contrario : si l'ensemble vide n'est pas inclus dans A, alors il existe au moins un élément de l'ensemble vide qui n'appartient pas à A. Or, il n'y a aucun élément dans l'ensemble vide, donc plus particulièrement aucun élément de l'ensemble vide qui n'appartienne pas à A. On en conclut donc que tout élément de Ø appartient à A et donc que Ø est un sous-ensemble de A. Plus généralement, toute proposition commençant par « pour tout élément de Ø » est vraie.

L'ensemble vide dans la théorie axiomatique des ensembles

L'ensemble vide est essentiel dans la théorie axiomatique des ensembles ou théorie ZFC, son existence est assurée par l'axiome de l'ensemble vide. Son unicité découle de l'axiome d'extensionnalité. De plus, on peut démontrer en utilisant le schéma d'axiomes de compréhension, que l'existence d'un ensemble quelconque implique l'axiome de l'ensemble vide, ce qui évite, quand on formalise la théorie des ensembles en logique du premier ordre, de faire appel à un axiome spécifique pour l'existence de l'ensemble vide (voir axiome de l'ensemble vide).

Le point de vue catégorique

L'ensemble vide peut être caractérisé très simplement comme objet de la catégorie des ensembles. C'est en effet l'unique objet ayant la propriété suivante: Pour tout ensemble E, il existe une et une seule flèche de Ø vers E. Bien entendu, dans le cas de cette catégorie, flèche signifie application. Plus généralement, un objet qui dans une catégorie a cette propriété est appelé un objet initial.

Voir aussi

-Théorie des ensembles
-Sous-ensemble
-Théorie axiomatique des ensembles
-Théorie des catégories Catégorie:Théorie des ensembles Catégorie:Zéro bg:Празно множество bs:Prazan skup ca:Conjunt buit cs:Prázdná množina da:Tomme mængde de:Leere Menge en:Empty set eo:Malplena aro es:Conjunto vacío et:Tühi hulk fa:مجموعه تهی fi:Tyhjä joukko fiu-vro:Tühi hulk gl:Conxunto baleiro he:הקבוצה הריקה hr:Prazni skup hu:Üres halmaz is:Tómamengi it:Insieme vuoto ja:空集合 ka:ცარიელი სიმრავლე ko:공집합 lmo:Cungjuunt vöj nl:Lege verzameling pl:Zbiór pusty pt:Conjunto vazio ru:Пустое множество sk:Prázdna množina sl:Prazna množica sr:Празан скуп sv:Tomma mängden uk:Порожня множина vi:Tập hợp rỗng zh:空集 zh-classical:空集
Sujets connexes
Alphabet grec   André Weil   Axiome d'extensionnalité   Axiome de l'ensemble vide   Cercle   Diamètre   Ensemble   Ensemble fini   Intersection   Mathématiques   Nombre cardinal   Norvégien   Phi   Problème universel   Schéma d'axiomes de compréhension   Sous-ensemble   Théorie axiomatique des ensembles   Théorie des catégories   Théorie des ensembles   Unicode   Zéro barré  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^