Postulats de la mécanique quantique

Infos
Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats.
Postulats de la mécanique quantique

Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats.

Introduction

Les implications de cette nouvelle vision sont si complexes, si profondes et si inhabituelles (par rapport à notre propre expérience) qu'une grande partie de la communauté scientifique a décidé de les éluder, et se contente d'utiliser la théorie, qui a fourni les prévisions les plus précises à ce jour. Les tenants de cette approche, dite de l'école de Copenhague, tiennent à peu près ce discours : :Il importe de remarquer dès maintenant que ces postulats n'ont aucun sens (méta-)physique : ils ne décrivent pas l'univers. Ils sont purement formels, opératoires, en ce qu'ils décrivent les opérations adéquates, mais sans permettre de les interpréter, ni a fortiori d'expliquer pourquoi elles permettent de décrire les phénomènes et même de les prédire. C'est la raison pour laquelle on a pu dire : :: « Si quelqu'un vous dit qu'il a compris la mécanique quantique, c'est un menteur » :Il s'agit d'une impossibilité radicale, liée à l'absence de lien physique entre les postulats et la réalité, et non d'une « simple » ignorance qui pourrait être comblée à l'intérieur du cadre de la mécanique quantique actuelle. :Bref, la mécanique quantique est parfaitement valide dès maintenant (en attendant une surprise toujours possible…), mais incompréhensible sans complément encore à faire. Parallèlement, une partie de la communauté scientifique ne pouvant accepter l'approche de l'école de Copenhague a tenté de créer une « autre » mécanique quantique qui serait en accord avec les principes « naturels » sur lesquels toute science expérimentale devrait s'appuyer : la reproductibilité d'une expérience et le principe de déterminisme. Dans ce but, de nombreuses théories aussi sérieuses que farfelues ont vu le jour. La première solution proposée fut celle des variables cachées (théorie qui suppose que l'information « manquante » pour que le système se comporte d'une manière déterministe absolue est portée par des variables dont nous n'avons pas la connaissance). À l'heure actuelle, il est impossible de résoudre tous les systématiques à l'aide d'une théorie de cette forme. Une autre solution à cette problématique est le fait d'accepter la mécanique quantique et ces « problème de déterminisme », mais, en opposition à l'école de Copenhague, de ne pas accepter le caractère fondamental des postulats de la mécanique quantique. Pour ce faire, les membres de cette école ont porté leur analyse sur les « axiomes » fondamentaux qui soutiennent les sciences expérimentales. Cette analyse a porté ces fruits, et cette école reformule ces axiomes de manière qu'une science ou mécanique basée sur cette « logique axiomatique » soit en accord avec la mécanique quantique. Cette solution est très peu connue dans le monde non scientifique et possède encore un grand nombre de détracteurs. Les discours des détracteurs et les réponses des protagonistes de cette solution peuvent se résumer ainsi : ;Les détracteurs : Cette solution ne fait que déplacer le problème, car au lieu d'avoir une mécanique quantique basée sur cinq postulats « sortis de nulle part », vous avez trouvé une solution pour qu'elle soit basée sur trois axiomes « sortis de nulle part ». ;Les protagonistes : Premièrement il est nécessaire de comprendre à quel point toute science est basée sur une axiomatique fondamentale qui régit l'acquisition de données expérimentales et le traitement de ces données. En effet, l'idée de causalité, de déterminisme, de reproductivité d'une expérience sont des concepts fondamentaux sans lesquels il serait impossible à l'esprit humain de créer une science. Et ces concepts sont des axiomes ! Ces axiomes ont été formulés durant l'Antiquité et nous les avons acceptés jusqu'à présent sans aucun doute. Or, avec l'arrivée de la physique moderne et l'étude des particules élémentaires, ces axiomes engendrent des paradoxes, il est donc clair que nous ne pouvons donc plus les accepter tel quel, il devient donc nécessaire de les reformuler. Nous n'avons pas déplacé le problème, car nous avons réduit six postulats et un axiome en trois axiomes. Enfin, ces trois nouveaux axiomes sont bien plus « naturels » que les six postulats de la mécanique quantique.

Formulation mathématique

La formulation mathématique de la mécanique quantique, dans son usage général, fait largement appel à la notation bra-ket de Dirac, qui permet de représenter de façon concise les opérations sur les espaces de Hilbert utilisés en analyse fonctionnelle. Cette formulation est souvent attribuée à John von Neumann. Soit un espace séparable \mathcal de Hilbert. Les états sont les rayons projectifs de \mathcal. Un opérateur est une transformation linéaire d'un sous-espace dense de \mathcal vers \mathcal. Si cet opérateur est continu, alors cette transformation peut être prolongée de façon unique à une transformation linéaire bornée de \mathcal vers \mathcal. Par tradition, les choses observables sont identifiées avec des opérateurs, bien que ce soit discutable, particulièrement en présence des symétries. C'est pourquoi certains préfèrent la formulation d'état de densité. Dans ce cadre, le principe d'incertitude d'Heisenberg devient un théorème au sujet des opérateurs non-commutatifs. En outre, on peut traiter des observables continues et discrètes ; dans le premier cas, l'espace de Hilbert est un espace de fonctions d'onde de carré intégrables.

Les postulats

Postulat I

Définition de l'état quantique La connaissance de l'état d'un système quantique est complètement contenue, à l'instant t, dans un vecteur normalisable de l'espace des états \mathcal. Il est habituellement noté sous la forme d'un ket | \psi (t) \rangle .

Postulat II

Mesure : définition d'une observable À toute propriété observable, par exemple la position, l'énergie ou le spin, correspond un opérateur hermitien linéaire agissant sur les vecteurs d'un espace de Hilbert \mathcal. Cet opérateur est nommé observable. Les opérateurs associés aux propriétés observables sont définis par des règles de construction qui reposent sur un principe de correspondanceDans les définitions données ci-dessus, les opérateurs sont représentés en fonction des coordonnées. Une autre représentation, équivalente, mais basée sur les quantités de mouvement existe aussi. : ;L'opérateur de position : \hat\mathbf = \mathbf ;L'opérateur d'énergie potentielle classique ou électromagnétique : \hat(\mathbf) = V_ (\mathbf) ;L'opérateur de quantité de mouvement : \hat\mathbf(\mathbf) = -i\hbar \nabla , où \nabla désigne le gradient des coordonnées \mathbf ;L'opérateur de moment angulaire : \hat\mathbf(\mathbf) = \hat\mathbf \times \hat\mathbf = -i\hbar\mathbf \times \nabla ;L'opérateur d'énergie cinétique : \hat(\mathbf) = \frac\hat\mathbf \cdot \hat\mathbf = -\frac\hbar^2 \nabla^2 ;L'opérateur d'énergie totale, appelé hamiltonien : \hat = \hat + \hat = \hat(\mathbf) + V_ (\mathbf) ;L'opérateur action du système, appelé lagrangien : \hat = \hat - \hat

Postulat III

Mesure : valeurs possibles d'une observable La mesure d'une grandeur physique représentée par l'observable A ne peut fournir que l'une des valeurs propres de A. Les vecteurs propres et les valeurs propres de cet opérateur ont une signification spéciale : les valeurs propres sont les valeurs pouvant résulter d'une mesure idéale de cette propriété, les vecteurs propres étant l'état quantique du système lors de cette mesure. En utilisant la notation bra-ket, ce postulat peut s'écrire ainsi : :::\hat | \alpha_n \rangle = a_n | \alpha_n \rangle où \hat, | \alpha_n \rangle et a_n désignent, respectivement, l'observable, le vecteur propre et la valeur propre correspondante. Les états propres de tout observable \hat sont complets et forment une base orthonormée dans l'espace de Hilbert. Cela signifie que tout vecteur | \psi (t) \rangle peut se décomposer de manière unique sur la base de ces vecteurs propres ( | \phi_i \rangle ): : | \psi \rangle = c_1 | \phi_1 \rangle + c_2 | \phi_2 \rangle + ... + c_n | \phi_n \rangle

Postulat IV

Mesure : probabilité d'obtention d'une valeur d'une Observable La mesure d'une grandeur physique représentée par l'observable A, effectuée sur l'état quantique (normalisé) | \psi (t) \rangle , donne le résultat an, avec la probabilité Pn égale à |cn|2. Le produit scalaire d'un état et d'un autre vecteur (qu'il appartienne ou non à \mathcal) fournit une amplitude de probabilité, dont le carré correspond à une probabilité ou une densité de probabilité de la façon suivante :
- Pour un système constitué d'une seule particule, la fonction d'onde \Psi_\alpha(\mathbf) = \langle \mathbf | \alpha \rangle est amplitude de probabilité que la particule est à la position \mathbf. La probabilité P_\alpha(\mathbf) de trouver la particule entre \mathbf et \mathbf + d\mathbf est: ::P_\alpha(\mathbf) = |\langle\mathbf|\alpha\rangle|^2 d^3\mathbf \equiv |\Psi_\alpha(\mathbf)|^2 d^3\mathbf Donc \rho_\alpha(\mathbf)=|\langle\mathbf|\alpha\rangle|^2 est une densité de probabilité. Si le système est dans un état |\alpha\rangle, alors l'amplitude de probabilité C_\beta\alpha\, et la probabilité P_\beta\alpha\, de le retrouver dans tout autre état |\beta\rangle sont: ::C_\beta\alpha = \langle\beta|\alpha\rangle. ::P_\beta\alpha = |\langle\beta|\alpha\rangle|^2. Ni |\alpha\rangle, ni |\beta\rangle ne doivent être nécessairement un état propre d'un opérateur quantique. Dans l'éventualité où un système peut évoluer vers un état |\alpha, t\rangle au temps t par plusieurs trajets différents, alors, pour autant que l'on n'effectue pas de mesure pour déterminer quel trajet a été effectivement suivi, |\alpha, t\rangle est une combinaison linéaire des états |\alpha_j, t\rangle où j spécifie le trajet: ::|\alpha, t\rangle = \sumw_j |\alpha_j, t\rangle où w_j\, sont les coefficient de la combinaison linéaire. L'amplitude C_\beta\alpha(t) = |\langle\beta|\alpha, t\rangle| devient alors la somme des amplitudes C_\beta\alpha_j(t) et la probabilité P_\beta\alpha(t)\, contient des termes d'interférence : ::P_\beta\alpha(t) = |\langle\beta|\alpha, t\rangle|^2 = \left|\sumw_j\langle\beta |\alpha_j, t\rangle\right|^2 = \left|\sumw_j C_\beta\alpha_j(t)\right|^2 Mais si une mesure a déterminé que le trajet k a été suivi, alors les coefficients deviennent w_j \rightarrow \delta_ et les sommes précédentes se réduisent à un seul terme. En supposant que le système se trouve dans un état |\alpha\rangle, alors la prédiction théorique de la valeur moyenne de la mesure de l'observable \hat est donnée par : ::\langle\hat\rangle_\alpha = \langle\alpha|\hat|\alpha\rangle

Postulat V

Mesure : réduction du paquet d'onde; obtention d'une valeur unique; projection de l'état quantique Si la mesure de la grandeur physique A, à l'instant t, sur un système représenté par le vecteur | \psi \rangle donne comme résultat la valeur propre a_n\, , alors l'état du système immédiatement après la mesure est le sous-espace propre associé à a_n\, : | \alpha_n \rangle. Ce postulat est aussi appelé "postulat de réduction du paquet d'onde".

Postulat VI

Évolution temporelle de l'état quantique L'état \left|\Phi, t\right\rangle de tout système quantique non-relativiste est une solution de l'équation de Schrödinger dépendante du temps: :i\hbar\frac\partial\partial t\left|\Phi, t\right\rangle = \hat\left|\Phi, t\right\rangle Le sixième postulat est l'équation de Schrödinger. Cette équation est l'équation dynamique de la mécanique quantique. Elle signifie simplement que c'est l'opérateur « énergie totale » du système ou hamiltonien, qui est responsable de l'évolution du système dans le temps. En effet, la forme de l'équation montre qu'en appliquant l'hamiltonien à la fonction d'onde du système, on obtient sa dérivée par rapport au temps c'est-à-dire comment elle varie dans le temps. Cette équation n'est valable que dans le cadre non relativiste.

Voir aussi

- Les trois axiomes de la mécanique quantique

Notes et références

Bibliographie

-
-:Le chapitre 3 de ce livre propose une revue dans les détails des postulats de la mécanique quantique. De plus, ce livre est probablement le livre de référence sur l'introduction à la mécanique quantique dans le monde francophone. Un bon niveau de mathématique est requis pour la compréhension de cet ouvrage. Le seul désavantage de cet ouvrage est, à l'instar de cet article, qu'il utilise la notation de Dirac qui est née alors que les mathématiques utiles à la mécanique quantique n'étaient que très peu développées. A l'heure actuelle, de nombreux théoriciens ont abandonné cette notation pour utiliser un formalisme, peut-être moins adapté à la mécanique quantique, mais plus rigoureux mathématiquement. Voir pour exemple les articles analyse fonctionnelle (mathématiques), théorie des opérateurs (mathématique) et théorie des groupes.
-
-:Livre écrit initialement en anglais. La traduction est bonne. Ce livre est probablement le plus adapté à un profane possédant un niveau bac scientifique en mathématique et voulant avoir une introduction rigoureuse de la mécanique quantique. Catégorie:Principe physique Catégorie:Physique quantique ar:صياغة رياضية لميكانيكا الكم en:Mathematical formulation of quantum mechanics es:Formulación matemática de la mecánica cuántica it:Postulati della meccanica quantistica ja:量子力学の数学的基礎 ko:양자역학의 수학적 공식화
Sujets connexes
Analyse fonctionnelle (mathématiques)   Causalité   Combinaison linéaire   Communauté scientifique   Commutativité   Déterminisme   Espace de Hilbert   Espace séparable   Fonction d'onde   Hamiltonien   Hermitien   John von Neumann   La Physique (Aristote)   Lagrangien   Les trois axiomes de la mécanique quantique   Moment angulaire   Mécanique quantique   Notation bra-ket   Observable   Opérateur   Paradoxes de la mécanique quantique   Paul Dirac   Postulat   Principe d'incertitude   Probabilité   Produit scalaire   Quantité de mouvement   Réduction du paquet d'onde   Spin   Symétrie   Valeur propre   Vecteur   Werner Heisenberg  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^