Rapport signal sur bruit

Infos
Le rapport signal sur bruit désigne la qualité d'une transmission d'information par rapport aux parasites. Ce concept est utilisé pour désigner un équipement électronique, ce rapport s'obtient alors en comparant le signal d'entrée avec le signal de sortie pour mesurer le niveau du bruit (signal parasite) ajouté par l'équipement ; il peut désigner la qualité d'une information reçue ; comme une image, une conversation… ; ou encore dans un sens plus large la conve
Rapport signal sur bruit

Le rapport signal sur bruit désigne la qualité d'une transmission d'information par rapport aux parasites. Ce concept est utilisé pour désigner un équipement électronique, ce rapport s'obtient alors en comparant le signal d'entrée avec le signal de sortie pour mesurer le niveau du bruit (signal parasite) ajouté par l'équipement ; il peut désigner la qualité d'une information reçue ; comme une image, une conversation… ; ou encore dans un sens plus large la conversation courante. L'Académie conseille les expressions rapport signal à bruit ou rapport signal sur bruit ; on utilise aussi parfois l'abréviation SNR du terme anglais signal-to-noise ratio.

Approche dans la vie quotidienne

Les notions d'information utile (le signal) et d'information inutile (le bruit) sont subjectives : l'information intéressante dans un système (ou pour une personne) peut gêner la réception ou la compréhension de l'information intéressante pour un autre système (ou pour une autre personne). On voit tout de suite que se pose la question de définir ce qui est le signal et ce qui est le bruit. Imaginons par exemple des personnes discutant dans une pièce avec la télévision allumée :
- pour le téléspectateur, le son du téléviseur est le signal, le son de la discussion est le bruit ;
- pour les personnes qui discutent, c'est le contraire. Notons qu'un son peut être signal et bruit ; par exemple si des personnes discutent dans la rue, le son des voitures est du bruit par rapport à la discussion, mais cela devient du signal lorsqu'il s'agit de traverser la rue puisque cela les prévient du danger. La notion de signal et de bruit ne se limite pas aux sons. Par exemple, lorsque l'on regarde la télévision, l'image sur l'écran est le signal, et le reflet de la lampe sur l'écran est le « bruit » (c'est une gêne). Sur une photographie, le sujet photographié est le signal, et l'environnement peut constituer du bruit (par exemple en cachant le sujet, ou bien en attirant le regard vers un autre endroit de la photographie) ; mais l'environnement est aussi du signal, puisqu'il fait partie de la composition de l'image.

Dans les forums Internet

; Rapport signal sur bruit : Proportion des messages pertinents par rapport aux messages inutiles circulant dans un groupe de nouvelles. Un groupe de nouvelles dont on dit que son rapport signal sur bruit est bas est caractérisé par un taux élevé de messages inutiles. : Source : On peut également considérer les spams comme le bruit des mails.

Acception scientifique

Le rapport signal-bruit est un terme utilisé en ingénierie, en traitement du signal ou en théorie de l'information pour désigner le rapport entre la grandeur d'un signal (information utile, significative) et celle du bruit (information inutile, non significative). Comme de nombreux signaux ont une échelle dynamique élevée, les rapports signal-bruit sont souvent exprimés en décibels, dans une échelle logarithmique. On définit ainsi la qualité d'un amplificateur, quel que soit son type et la catégorie de signaux qu'il traite. Plus le rapport est élevé, moins l'appareil dénature le signal d'origine.

Sources de bruit

Le bruit a de nombreuses sources, internes ou externes au système :
- les sources externes sont des signaux générés en dehors du système et qui y pénêtrent soit par défaut d'isolation (blindage ou filtrage des alimentations insuffisants) soit parce-qu'il n'est pas possible de s'en isoler (transmission en milieu ouvert) ;
- les sources internes sont souvent dues à des phénomènes microscopiques aléatoires, rencontrés en particulier lors de l'amplification électronique d'un signal : bruit thermique, bruit grenaille, bruit flicker, bruit en créneaux, bruit d'avalanche. Un bruit peut apparaître à différentes étapes d'un processus. Cela peut être :
- à la source de signal, à cause du système émetteur lui-même ;
- lors de sa propagation au travers de son canal : par exemple un signal radio indésirable, d'origine humaine ou non (éruptions solaires, orages) ;
- au niveau du récepteur : par exemple le fameux bourdonnement à 50 ou 60 Hz dû au courant du secteur ou les parasites dus à une alimentation à découpage insuffisamment filtrée.

Amélioration du rapport signal sur bruit

Enregistrement de bruit de mesure d'un appareil d'analyse thermogravimétrique mal isolé mécaniquement : le milieu de la courbe montre une baisse du bruit due à la faible activité humaine environnante la nuit Les méthodes classiques pour améliorer le rapport signal/bruit sont :
- amplifier le signal émis, en faisant attention à ne pas saturer ;
- réduire le bruit de fond ambiant, par exemple en maîtrisant mieux l'environnement, voire en isolant l'émetteur et le récepteur dans un espace confiné ;
- diminuer la température pour diminuer l'effet thermique ;
- filtrer le signal. Le filtrage est efficace lorsque le signal et le bruit ont des caractéristiques différentes. Par exemple :
- si l'intensité du signal est forte et celle du bruit faible, on peut couper les variations de faible amplitude, avec un expanseur ;
- si la fréquence du signal et du bruit sont différentes, on peut filtrer en fonction de la fréquence ;
- si le signal est régulier et que le bruit est aléatoire, on peut augmenter le temps d'acquisition et faire la moyenne. Le laboratoire Dolby s'est rendu célèbre par ses systèmes de réduction de bruit. Dans le système Dolby A, le son est compressé à l'enregistrement afin d'avoir un bon rapport signal sur bruit sans saturer le système ; puis, à la restitution, le son est expansé. Les paramètres de compression et d'expansion dépendent de la gamme de fréquence.

Bruit aléatoire

Répartition de l'intensité détectée (haut) et intensité en fonction du temps (bas) L'image ci-contre représente un signal constant perturbé par un bruit aléatoire : l'intensité du phénomène est relevée au cours du temps, le signal a une intensité constante de 5, et le bruit est aléatoire et suit une loi normale d'écart type 1 (échelles arbitraires). Le rapport signal sur bruit peut se définir par le rapport entre l'intensité moyenne mesurée et l'écart type. Voir aussi Processus stochastique.

Augmentation du temps d'acquisition (signal constant)

Amélioration du rapport signal sur bruit en augmentant le temps d'acquisition Le bruit étant aléatoire, sa moyenne dans le temps tend vers 0, alors que le signal étant constant, sa moyenne est égale à son intensité. Ainsi, si l'on accumule la mesure sur une longue durée et que l'on fait la moyenne de l'intensité, on se rapproche de la valeur du signal, on élimine le bruit. Par exemple, dans le cas des rayons X émis par un tube à rayons X, le nombre de photons émis par seconde est aléatoire et est soumis à une loi de Poisson : l'écart type sur le nombre de photons collectés est égal à la racine carrée de la moyenne. Si le taux d'émission par seconde est de I0+ε(t), I0 étant une constante et ε étant une variable aléatoire, on a : \sigma_\epsilon = \sqrt et donc si l'on cumule N photons durant un temps τ, la variable aléatoire N vérifie : : \bar = \tau \cdot I_0 : \sigma_N = \sqrt\tau \cdot I_0 Le rapport signal sur bruit vaut donc : : \frac\bar\sigma_N = \sqrt\tau \cdot I_0 on voit donc que dans ce cas-là, en multipliant par quatre le temps de mesure, on améliore d'un facteur deux le rapport signal sur bruit. Le facteur d'amélioration dépend bien entendu de la loi statistique que suit le bruit.

Filtrage en fréquence

Spectre en fréquence d'un signal sinusoïdal avec un bruit aléatoire ; sur le spectre, on voit le pic unique correspondant au signal et le fond aléatoire Spectre en fréquence d'un signal présentant plusieurs pics et bruité ; la partie gauche du spectre contient le signal, et pour les fréquences supérieures à l'inverse de la largeur des pics, il n'y a que du bruit Le bruit aléatoire peut se représenter par un spectre uniforme (voir l'article Bruit blanc). Si le signal est constant ou périodique, son spectre est un dirac (pic unique) ; s'il n'est pas périodique mais qu'il présente des pics de largeur minimale, son spectre est limité aux « basses fréquences », la fréquence la plus haute correspondant à l'inverse de la largeur des pics. En appliquant un filtre passe-bande ou passe-bas, on peut ainsi conserver la partie du spectre contenant le signal, et éliminer la partie du spectre ne contenant que du bruit. On peut aussi traiter numériquement le signal : on calcule la transformée de Fourier de l'intensité collectée, on coupe le spectre pour n'en garder que la partie contenant du signal, et l'on fait la transformée de Fourier inverse. Voir aussi Analyse spectrale.

Filtrage par lissage

Le bruit étant aléatoire, on s'attend à ce qu'il change d'un point à l'autre. Si le signal a des variations lentes devant le pas d'échantillonnage, alors un lissage de la courbe peut permettre de conserver les caractéristiques du signal tout en réduisant le bruit. Cependant, le procédé peut provoquer des artéfacts ; par exemple, des zones qui apparaissaient clairement comme bruitées présentent suite au lissage des ondulations lentes, sans que l'on puisse savoir si ces ondulations appartiennent au signal ou résultent du lissage du bruit. Voir l'article détaillé Lissage.

Travail sur le bruit

Le bruit lui-même peut être source d'information. Par exemple, en électrochimie et en particulier dans le domaine de la corrosion aqueuse, on s'intéresse aux corrélations entre les variations du potentiel et de l'intensité du courant (bruit électrochimique).

Dégradation volontaire du rapport signal sur bruit

Il peut être également intéressant réduire le rapport signal sur bruit, soit en augmentant le bruit, soit en distordant le signal, par exemple :
- pour un dispositif anticopie :
- un bruit invisible/inaudible à la restitution qui se trouve augmenté au cours des étapes de réplication analogique, et rend les copies de mauvaise qualité,
- un CD audio protégé est difficilement lisible sur ordinateur,
- de manière générale voir l'article Gestion numérique des droits ;
- pour les captchas ;
- pour limiter les artefacts de quantification, on peut ajouter un bruit de manière à "interpoler" statistiquement un signal.

Voir aussi

===
Sujets connexes
Alimentation à découpage   Amplificateur   Amplificateur électronique   Analyse spectrale   Analyse thermogravimétrique   Bel   Bruit   Bruit blanc   Bruit d'avalanche   Bruit en créneaux   Bruit flicker   Bruit grenaille   Bruit thermique   Captcha   Corrosion aqueuse   Dolby   Erreur (métrologie)   Filtre (électronique)   Fonction δ de Dirac   Forum Internet   Fréquence   Gestion numérique des droits   Interpolation numérique   Limite de détection   Lissage   Loi de Poisson   Loi normale   PSNR   Parasite (électricité)   Photographie   Processus stochastique   Quantification   Spectre (physique)   Théorie de l'information   Traitement du signal   Transformée de Fourier   Tube à rayons X   Télévision  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^