Volcanologie

Infos
Schéma structural d'un volcan type. La volcanologie ou vulcanologie est la science qui étudie les phénomènes volcaniques, leurs produits et leurs mises en place : volcans, geysers, fumerolles, éruptions volcaniques, magmas, laves, tephras, etc. Un volcanologue ou vulcanologue est le scientifique spécialiste de cette discipline liée à la géophysique, à la sismologie et à la géologie dont elle est une spécialité.
Volcanologie

Schéma structural d'un volcan type. La volcanologie ou vulcanologie est la science qui étudie les phénomènes volcaniques, leurs produits et leurs mises en place : volcans, geysers, fumerolles, éruptions volcaniques, magmas, laves, tephras, etc. Un volcanologue ou vulcanologue est le scientifique spécialiste de cette discipline liée à la géophysique, à la sismologie et à la géologie dont elle est une spécialité.

Histoire de la volcanologie

L'histoire de la vulcanologie est, comme la plupart des autres histoires des sciences naturelles, marquée par trois grandes étapes. Une étape superstitieuse où les croyances et les mythes religieux dominent largement sur les connaissances puis un apport scientifique qui cherche à concilier les observations et les croyances et enfin une connaissance scientifique du phénomène qui ne démarre qu'au par William Hamilton , plus tard donc que les autres sciences naturelles. Enfin, en 1912, avec la théorie de la tectonique des plaques d'Alfred Wegener, les mécanismes, qui non seulement provoquent les éruptions mais aussi les tremblements de terre, commencent à être compris.

Objectif

Les objectifs de cette science sont de comprendre l'origine et le fonctionnement des volcans et des phénomènes assimilés afin d'établir un diagnostic (pour une période déterminée) sur les risques et les dangers encourus par les populations et les activités humaines. Les études et les recherches se déroulent dans un premier temps sur le terrain afin de procéder à des collectes d'informations sous la forme d'observations, de mesures et d'échantillonnages et dans un second temps en laboratoire afin d'analyser et d'interpréter les données et les échantillons. Les volcanologues, aidés par les progrès en métrologie, vont alors procéder à un recensement des volcans et à l'élaboration d'une classification selon le type éruptif : hawaïen, strombolien, vulcanien, peléen, plinien et surtseyen. Ils feront également le lien entre geysers, fumerolles, solfatares, etc. et volcans et expliquerons leurs fonctionnements. Différentes formations géologiques seront également expliquées par le volcanisme et leur mise en place fera l'objet de nombreuses recherches : dykes, necks, coulées de lave, ignimbrite, pouzzolane, guyots, atolls, etc.

Instruments de mesures et observations

Divers instruments de mesure ont été élaborés ou empruntés à d'autres disciplines afin d'obtenir des données fiables sur le fonctionnement des volcans et notamment la prédiction des éruptions volcaniques. L'évènement déclenchant une éruption volcanique est l'arrivée de magma dans la chambre magmatique qui va provoquer sa mise sous pression. Cette mise sous pression s'accompagne d'un gonflement du volcan dù à la dilatation des roches et la poussée du magma sur les parois. Ce gonflement du volcan va générer des microséismes, une augmentation de l'inclinaison des pentes du volcan, une augmentation du diamètre du cratère ou de la caldeira sommitale. L'arrivée du magma dans la chambre magmatique va provoquer quant à lui le dégazage du réservoir et va pouvoir être repéré comme une anomalie thermique à l'aide d'un thermomètre à infrarouge ou d'un pyromètre. Les sismographes permettent aux volcanologues de détecter les microséismes provoqués par la mise sous pression de la chambre magmatique. Les sismographes peuvent également détecter le trémor : juste avant une éruption volcanique, la remontée du magma dans la cheminée volcanique génère une vibration continue et faible du volcan. Ce trémor constitue ainsi un outil fiable permettant d'annoncer l'imminence d'une éruption. L'inclinomètre ou l'accéléromètre mesurent quant à eux les variations de pente du volcan jusqu'à une précision de un par million. Ils sont placés à différents endroits sur les pentes du volcan lors d'une phase de repos. La mise sous pression de la chambre magmatique provoque un gonflement du volcan qui voit l'inclinaison de ses pentes s'accentuer. À la suite de l'éruption volcanique, la pression dans la chambre magmatique baisse ce qui diminue l'inclinaison des pentes du volcans. Ainsi le volcanologue peut prévoir le début et la fin prochaine d'une éruption lorsque les inclinomètres indiquent une variation de la pente du volcan. L'altimètre joue un rôle de complément à l'inclinomètre. Placé également sur les pentes du volcan, il va indiquer les augmentations et les diminutions d'altitude au fil des gonflements et des dégonflements du volcan. L'interféromètre permet de mesurer la distance entre deux points grâce à un laser. L'appareil de mesure et le réflecteur étant placés de part et d'autre d'un cratère ou d'une caldeira, ils permettent d'indiquer une augmentation ou une diminution de la taille du cratère ou de la caldeira, signe que le volcan se gonfle ou se dégonfle selon la pression dans la chambre magmatique. L'échantillonnage permet de déterminer le type et le passé éruptif du volcan selon la nature, la proportion et la composition des laves, des tephras et des gaz. La reprise de l'émission de gaz par un volcan ou les variations dans leurs compositions peut constituer un indice déterminant dans l'imminence et les caractéristiques (type éruptif, puissance, etc) d'une éruption. Les volcanologues procèdent aussi à des relevés de température des gaz et de la lave en fusion grâce à un pyromètre. Lors d'une éruption volcanique, les volcanologues sur place peuvent procéder à différentes mesures, observations et échantillonnages : prélèvements de lave liquide, de gaz, de tephras, observation du déroulement de l'éruption (hauteur du panache volcanique, nombre et puissance des explosions, des fontaines de lave, vitesse et température des coulées de lave, etc), ... Le volcanologue effectue également des mesures topographiques à l'aide de théodolites et géologiques (prélèvements de roche) dans le but de dresser une carte et un historique des risques volcaniques aux alentours du volcan.

Analyses et interprétations

Les analyses se font en général dans l'observatoire volcanologique du volcan étudié lorsqu'il en possède un. Les mesures effectuées à l'aide des instruments sont décryptées, comparées avec le passé du volcan et entre les volcans, etc tandis que les échantillons subissent une série de mesures et d'analyses chimiques, cristallographiques, physiques, géochimiques, ... La synthèse des résultats et leur recoupement permet ainsi de réaliser des diagrammes, des cartographies, etc permettant d'établir un historique du volcan et d'évaluer le risque éruptif pour une période plus ou moins longue. Lors de la prévision d'une éruption, les volcanologues s'aident des différentes mesures effectuées. Si un ou plus des facteurs du volcan varie (composition des gaz, pente du volcan, sismicité, etc), c'est peut-être le signe qu'une éruption se prépare.

Pétrographie et minéralogie

Deux grands types de roches volcaniques constituent 95% des laves et tephras émis par les volcans : les basaltes et les andésites. Ces deux roches sont en majorité formées de cristaux de silice, de feldspaths et de pyroxène mêlés à un verre volcanique qui n'a pas eu le temps de cristalliser complètement à cause de la remontée et du refroidissement brutal du magma. L'obsidienne par exemple n'est formée que d'un verre volcanique. Le basalte, issu du magmatisme de point chaud et de dorsale, résulte de la fusion partielle du manteau par décompression au niveau des dorsales. L'origine du magma provenant des points chauds est encore sujette à débat. C'est une lave fluide car elle est relativement pauvre en gaz et en silice (environ 45%). L'andésite, issue du magmatisme de subduction, résulte quant à elle de la fusion partielle du manteau par hydratation au niveau des fosses de subduction. Les andésites sont plus pâteuses car elles sont plus riches en gaz et en silice (environ 55%). La viscosité d'un magma est dépendante de sa teneur en silice car c'est ce minéral qui détermine le nombre de liaisons possibles avec l'oxygène : plus un magma contient de silice, plus il est visqueux et plus l'éruption volcanique aura une tendance explosive. La carbonatite est une lave très rare composée en majorité de carbonate de calcium (calcite), de carbonate de magnésium (dolomite), de carbonate de fer et de magnésium (sidéro-magnésite) ou de carbonate de sodium. Très fluide, ne comportant que très peu de silice (moins de 1%), de température peu élevée (500 à 550°C), elle est noire lorsqu'elle est émise mais blanchi au contact de l'air une fois refroidie (quelques heures) car ses minéraux réagissent avec l'humidité ambiante. Seul l'Ol Doinyo Lengaï émet des carbonatites actuellement.

Volcans de la Décennie

Les années 1990 ont été déclarées « Décennie internationale pour la réduction des catastrophes naturelles » par les Nations-Unies. L'IAVCEI (pour International Association of Volcanology and Chemistry of the Earth's Interior littéralement Association internationale de la volcanologie et de la chimie de l'intérieur de la Terre) a alors décidé de dresser une liste de volcans actifs ou récemment actifs et susceptibles, suivant leur passé éruptif et leur proximité avec des zones peuplées, de produire de grandes catastrophes volcaniques. Le but de cette liste composée de seize volcans (« Decade volcanoes » en anglais) est de promouvoir leur étude et la sensibilisation des populations à leur sujet afin de prévenir tout risque humain. Les seize volcans sont : : L'attention accrue portée sur ces volcans a notamment permis quelques succès :
- déviation d'une coulée de lave sur l'Etna en 1992 évitant ainsi la destruction d'habitations ;
- meilleure compréhension de l'histoire du Galeras ;
- meilleure compréhension de l'implication de l'eau dans les éruptions du Taal ;
- adaptation de la législation dans le cas de nouvelles construction aux abords du Mont Rainier ;
- réduction de la densification des habitations dans la caldeira du Taal ;
- élaboration d'un plan d'évacuation de l'agglomération de Naples. Mais les scientifiques et les autorités ont aussi rencontré d'importants problèmes :
- l'échec de la gestion de l'éruption du Mont Unzen avec la mort de 43 personnes dont trois volcanologues en 1991 ;
- la mort de six volcanologues et de trois touristes dans le cratère du Galeras au cours d'une éruption non prévue en 1993. Les volcanologues, qui n'avait pas prévu l'excursion sur le volcan, participaient à un colloque de volcanologie dans la ville de Pasto ;
- l'impossibilité d'approcher le Santa Maria / Santiaguito à cause de la guerre civile au Guatemala jusqu'en 1996, date de la signature d'un cessez-le-feu ;
- le débordement du génocide du Rwanda au Zaïre et la déstabilisation du régime de Mobutu Sese Seko avec la première et la seconde guerre du Congo, empêchant d'approcher le Nyiragongo à partir de 1996 ;
- les crédits limités accordés à ces études.

Volcanologues célèbres

Déodat de Dolomieu
- Pline l'Ancien, 23-79 romain
- Pline le Jeune, 61-114 romain
- le comte de Buffon, 1707-1788 français
- James Hutton, 1726-1797 britannique
- William Hamilton, 1730-1803 britannique
- Barthélemy de Saint-Fond, 1741-1819 français
- Déodat de Dolomieu, 1750-1801 français
- Jean-Baptiste Bory de Saint-Vincent, 1778-1846 français
- George Poulett Scrope, 1797-1876 britannique
- Robert Mallet, 1810-1881 britannique
- Ferdinand Fouqué, 1828-1904 français
- Charles Vélain, 1845-1925 français
- Giuseppe Mercalli, 1850-1914 italien
- Alfred Lacroix, 1863-1948 français
- Haroun Tazieff, 1914-1998 français
- Don Peterson, 1925-2003 américain
- George Walker, 1926-2005 britannique
- Robert W.Decker, 1927-2005 américain
- Keiiti Aki, 1930-2005 japonais
- Jean-Louis Cheminée, 1937-2003 français
- Claude Allègre, 1937- français
- Katia Krafft, 1942-1991 française
- Peter Williams Francis, 1944-1999 britannique
- Maurice Krafft, 1946-1991 français
- Henry Gaudru, 1948- français
- David Johnston, 1949-1980 américain
- Jacques-Marie Bardintzeff, 1953- français

Voir aussi

===
Sujets connexes
Accéléromètre   Alfred Lacroix   Alfred Wegener   Altimètre   Altitude   Andésite   Anglais   Années 1990   Atoll   Avachinsky   Barthélemy Faujas de Saint-Fond   Basalte   Calcite   Calcium   Caldeira   Carbonatite   Cessez-le-feu   Chambre magmatique   Charles Vélain   Chimie   Claude Allègre   Colombie   Cratère volcanique   Cristal   Cristallographie   Cristallogénèse   David Johnston (volcanologue)   Deuxième guerre du Congo   Dolomite   Dorsale (géologie)   Dyke   Déodat Gratet de Dolomieu   Espagne   Etna   Feldspath   Fer   Ferdinand André Fouqué   France   Fumerolle   Fusion (physique)   Galeras   George Patrick Leonard Walker   George Poulett Scrope   Geyser   Giuseppe Mercalli   Grèce   Guatemala   Guyot   Géochimie   Géologie   Géophysique   Haroun Tazieff   Henry Gaudru   Histoire de l'histoire naturelle   Histoire de la volcanologie   Histoire du Guatemala   Histoire du Rwanda   Ignimbrite   Inclinomètre   Indonésie   Interférométrie   Italie   Jacques-Marie Bardintzeff   James Hutton   Japon   Jean-Baptiste Bory de Saint-Vincent   Katia Krafft   Keiiti Aki   Koryaksky   Laser   Lave   Magma (géologie)   Magnésite   Magnésium   Mauna Loa   Maurice Krafft   Mexique   Mobutu Sese Seko   Mont Unzen   Mythe   Métrologie   Naples   Neck   Nyiragongo   Observatoire volcanologique   Obsidienne   Ol Doinyo Lengaï   Organisation des Nations unies   Oxygène   Papouasie-Nouvelle-Guinée   Peter Williams Francis   Philippines   Physique   Pline l'Ancien   Pline le Jeune   Point chaud   Pouzzolane   Première guerre du Congo   Pyromètre   Pyroxène   Robert Mallet (géologue)   Roche volcanique   Rome antique   Royaume-Uni   Russie   République démocratique du Congo   Sakurajima   Santorin   Science   Sciences naturelles   Sidérite   Silice   Sismographe   Sismologie   Solfatare   Subduction   Superstition   Tectonique des plaques   Teide   Thermomètre infrarouge   Théodolite   Topographie   Tremblement de terre   Trémor   Viscosité   Volcan   Vésuve   William Hamilton (1730-1803)   Zaïre  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^