Cycle du combustible nucléaire

Infos
Le cycle du combustible nucléaire, aussi appelé chaîne du combustible nucléaire, est l'ensemble des opérations destinées à fournir du combustible aux réacteurs nucléaires, puis à gérer le combustible irradié, depuis l'extraction du minerai jusqu'à la gestion des déchets. Ces opérations constituent alors les différentes étapes du cycle du combustible nucléaire qui interviennent en amont ou en aval du cycle selon qu'elles se déroulent avant ou a
Cycle du combustible nucléaire

Le cycle du combustible nucléaire, aussi appelé chaîne du combustible nucléaire, est l'ensemble des opérations destinées à fournir du combustible aux réacteurs nucléaires, puis à gérer le combustible irradié, depuis l'extraction du minerai jusqu'à la gestion des déchets. Ces opérations constituent alors les différentes étapes du cycle du combustible nucléaire qui interviennent en amont ou en aval du cycle selon qu'elles se déroulent avant ou après son irradiation dans un réacteur. Il existe plusieurs stratégies de cycle du combustible qui se distinguent par l'absence ou la présence de certaines étapes, en particulier celles d'enrichissement de l'uranium et de retraitement du combustible irradié. En 2006, les cycles du combustible mis en œuvre dans le monde peuvent être répartis en deux grandes catégories. Les cycles sans recyclage consistent à considérer tout le combustible irradié comme déchet. Les cycles avec recyclage partiel consistent à extraire du combustible irradié déchargé des réacteurs tout ou partie des matières valorisables – c'est-à-dire susceptibles d'être réutilisées pour fournir de l'énergie – afin de fabriquer du combustible neuf. Théoriquement, un cycle est dit ouvert lorsque les matières valorisables du combustible irradié ne sont pas recyclées. Un cycle est dit fermé dans le cadre d'un recyclage des isotopes fissiles.

Étapes du cycle

Usuellement, le cycle du combustible est décomposé en une phase amont et une phase aval par rapport à l'irradiation en réacteur. Illustration des notions d'amont et d'aval du cycle Cette décomposition est quelque peu perturbée lorsque le cycle intègre des opérations de recyclage. En effet, le retraitement du combustible est une étape de l'aval du cycle pour le combustible irradié. En revanche, le recyclage des matières valorisables est une étape de l'amont du cycle pour le combustible neuf fabriqué à partir de ces matières valorisables.

Amont du cycle

Les opérations de l'amont du cycle consistent en l'extraction et la mise en forme physico-chimique des matières fissiles pour leur usage en réacteur. L'amont du cycle comprend jusqu'à quatre étapes.

Extraction minière de l'uranium naturel

yellowcake L'extraction de l'uranium naturel permet de d'obtenir les ressources fissiles nécessaires à la fabrication du combustible. Elle est réalisée en 2 étapes. Le minerai, dont la teneur est de 1 à d'uranium par tonne, est extrait d'une mine souterraine ou à ciel ouvert. Il est ensuite concentré par attaque et extraction chimiques pour former le yellowcake, une pate jaune dont la teneur est d'environ . Les principaux pays producteurs sont le Canada et l'Australie. En 2006, la production mondiale annuelle est de l'ordre de d'uranium.

Conversion

Hexafluorure d'uranium UF6 Le yellowcake répond à des objectifs de facilité de transport (concentration). Cependant, les technologies d'enrichissement de l'uranium actuellement mises en œuvre nécessitent la conversion préalable de l'U3O8 en hexafluorure d'uranium UF6. La conversion est réalisée en deux étapes. La raffinage par dissolution et extraction permet d'obtenir un nitrate d'uranyle UO2(NO3)2 de grande pureté (>). La conversion en elle-même met en œuvre une série de procédés chimiques (précipitation, calcination, réduction et fluoration) pour obtenir l'hexaflurorue d'uranium. Les capacités mondiales de conversion sont réparties au sein des usines de douze pays : Canada, France (usine de Malvesi dans l'Aude), Fédération de Russie, Royaume-Uni, États-Unis, Argentine, Brésil, Chine, République de Corée, Pakistan, Japon et Iran.

Enrichissement

Centrifugeuse L'UF6 obtenu au terme de l'étape de conversion chimique n'est pas directement exploitable en réacteur. En effet, les réacteurs à eau légère (REP et REB par exemple) sont caractérisés par des captures absorbantes dans le modérateur. Cette dégradation du bilan neutronique nécessite un surcroît de neutrons, fourni par l'emploi d'uranium enrichi en isotope 235. Les réacteurs modérés à l'eau lourde bénéficient d'un bilan neutronique suffisamment excédentaire pour fonctionner à l'uranium naturel. Le combustible destiné aux CANDU peut donc se passer de l'étape d'enrichissement. L'augmentation de la teneur de l'uranium en son isotope 235 est l'étape dite d'enrichissement. Deux technologies sont actuellement mises en œuvre : la diffusion gazeuse et l'ultra-centrifugation. À l'issue de cette étape, l'uranium enrichi (sous forme d'hexafluorure) peut servir à la fabrication de combustible tandis que l'uranium appauvri est entreposé pour utilisation ultérieure ou considéré comme déchet. En 2001, les capacités mondiales d'enrichissement s'élevaient à par an, réparties sensiblement à parité entre les deux technologies.

Fabrication du combustible

Pastilles combustibles UOX L'étape de fabrication du combustible est destinée à donner aux matières nucléaires la forme physico-chimique adéquate pour une irradiation en réacteur. Les centrales électrogènes utilisent un combustible d'oxyde d'uranium UOX (Uranium OXide) ou un combustible métallique (réacteurs Magnox par exemple). La première étape de la fabrication du combustible comprend la modification des caractéristiques physico chimiques des matières fissiles. Cette étape est différente selon les filières. Les matières fissiles sont ensuite encapsulées dans des gaines pour constituer des crayons. Enfin, ces crayons sont mis en réseau dans des assemblages combustibles. De nombreux pays disposent d'usines de fabrication de combustible. Les capacités mondiales de fabrication sont de l'ordre de (tML : tonnes de métal lourd) pour le combustible UOX des réacteurs à eau légère et pour le combustible des réacteurs à eau lourde (majoritairement au Canada). Les autres usines de fabrication concernent le combustible AGR (au Royaume-Uni) ainsi que les combustibles MOX pour REP et RNR.

Irradiation en réacteur

Lors de l'irradiation en réacteur, le combustible subit des modifications physico-chimiques dues aux réactions nucléaires sous flux neutronique.
-Un atome d'uranium 238 peut capturer un neutron pour former par désintégration radioactive β un atome de plutonium 239. D'autres isotopes de l'uranium et du plutonium peuvent se former par captures successives, de même que des transuraniens.
-Un atome de 233U, 235U, 239Pu ou 241Pu peut fissionner suite à un choc avec un neutron thermique. Dans les réacteurs à neutrons rapides, d'autres isotopes sont fissiles. Il se forme alors deux produits de fission, dont certains sont gazeux. La production thermique ainsi que la formation de gaz au sein de la pastille conduisent à des déformations mécaniques (gonflement et dégradation). Par ailleurs, les variations thermiques conduisent à des déformations de la gaine (flambage). L'usure du combustible est évaluée par son de taux de combustion ou burnup en GW.jr/tML GW.jr/tML : le gigawatt x jour / tonne de métal lourd est l'unité de mesure de l'énergie fournie par le combustible au cours de son passage en réacteur.. Le combustible est d'autant mieux utilisé que le taux de combustion est élevé et l'enrichissement résiduel faible. Toutefois, de hauts taux de combustion détériorent la gaine et les caractéristiques neutroniques du cœur (sûreté des plans de chargement). Après passage en réacteur, le combustible UOX irradié contient donc de l'uranium 235 et 238 avec un enrichissement moindre que dans le combustible neuf, d'autres isotopes de l'uranium en faibles quantités, du plutonium dont l'isotopie dépend du taux de combustion, des actinides mineurs et des produits de fission. Le combustible MOX irradié contient les mêmes composants en proportions différentes. Il existe 440 réacteurs nucléaires en opération dans le monde en 2005.

Aval du cycle

Les opérations de l'aval du cycle consistent à gérer les matières radioactives issues de l'irradiation du combustible. L'aval du cycle comprend des opérations de transformation physico-chimique du combustible irradié ainsi que la gestion à court et long terme des déchets radioactifs. La radioactivité des matières de l'aval du cycle conduit à l'émission de rayonnements ionisants ainsi qu'à un dégagement thermique important, ce qui contraint l'ensemble des procédés mis en œuvre.

Entreposage intermédiaire du combustible irradié

Le combustible déchargé des réacteurs est fortement irradiant gamma et neutron et dégage une chaleur importante due aux décroissances radioactives. La première phase de l'aval du cycle consiste donc à gérer le rayonnement et la thermicité des assemblages. Le combustible est tout d'abord stocké en centrale dans la piscine dédiée du bâtiment combustible. L'eau assure les rôles de radioprotection et de dissipateur thermique. Le stockage en eau dure à minima quelques années afin de diminuer la puissance résiduelle du combustible à travers la décroissance radioactive des produits de fission à vie courte. Le combustible irradié est ainsi plus facile à transporter. Dans un second temps, le combustible irradié est placé dans un site d'entreposage. Cette étape permet de gérer les flux et la thermicité dans l'attente d'un stockage définitif ou d'un retraitement. Usuellement, cet entreposage est réalisé en piscine. L'entreposage à sec (sous air ou atmosphère inerte) se développe toutefois rapidement. Selon les démonstrations de sûreté, les entreposages peuvent s'envisager sur des durées de l'ordre de 50 à .

Retraitement du combustible irradié

Vitrification Après irradiation en réacteur, le combustible usé contient des matières dites valorisables (uranium faiblement enrichi et plutonium principalement, actinides mineurs sous certaines hypothèses) et des produits de fission. Le retraitement du combustible irradié consiste à séparer les matières valorisables des déchets. Selon le procédé de séparation mis en œuvre, les différents actinides peuvent être extrait isolément ou conjointement. Par exemple, le procédé PUREX extrait isolément l'uranium et le plutonium tandis que les produits de fission et les actinides mineurs sont extraits conjointement. À l'issue de ce procédé, les actinides mineurs et les produits de fission sont calcinés puis vitrifiés au sein d'une matrice inerte qui assure la stabilité physico-chimique du colis de déchets. Les autres matières disponibles sont le plutonium (sous forme métal ou oxyde), qui peut être utilisé conjointement avec de l'uranium appauvri afin de fabriquer du combustible MOX et l'uranium, dont l'enrichissement est égal à celui du combustible irradié. Les capacités mondiales de retraitement sont concentrées dans un nombre restreint de pays : France - Usine de retraitement de la Hague , Royaume-Uni - Sellafield , Russie - Mayak et Japon pour les combustibles des réacteurs à eau légère, Royaume-Uni et Inde pour les autres combustibles. L'usine de retraitement de West Valley aux États-Unis est arrêtée depuis 1972.

Entreposage des déchets radioactifs et des combustibles irradiés

Les déchets du procédé de retraitement (produits de fission et actinides mineurs vitrifiés dans le cadre du procédé PUREX, coques et embouts compactés, etc.) sont entreposés dans l'attente d'une solution définitive d'évacuation. Dans le cadre d'un cycle sans retraitement, les combustibles irradiés sont considérés comme des déchets. Cet entreposage, qui vise une durée supérieure à celle requise pour l'entreposage intermédiaire, consiste à conditionner les matières radioactives puis à les entreposer dans des ouvrages en surface ou sub-surface sur une durée séculaire ou pluri-séculaire. Pendant la période d'entreposage, les isotopes radioactifs décroissent, ce qui diminue à la fois l'activité et la thermicité des matières entreposées. Au terme de cette étape, les matières radioactives sont donc plus faciles à manipuler (pour un éventuel retraitement) et moins contraignantes en terme d'émission de chaleur dans l'optique d'un stockage en couche géologique. Le 30 septembre 2003, un centre d'entreposage est mis en service aux Pays-Bas avec une durée de vie prévisionnelle de : l'installation HABOG, exploitée par COVRA.

Stockage en couche géologique profonde

Schéma de principe du projet Yucca Mountain Le stockage en couche géologique profonde consiste à conditionner les déchets, puis à les disposer dans des ouvrages souterrains adaptés. Certains types de déchets, tels ceux de haute activité et à vie longue (y compris éventuellement des assemblages de combustible irradié) et ceux de moyenne activité et à vie longue, émettent pendant des durées pluri-séculaires ou pluri-millénaires des rayonnements ionisants. L'objectif d'un stockage profond est de garantir l'absence d'impact de ces déchets sur le long terme, en situation normale ou dégradée. En 2006, il existe plusieurs laboratoires de recherche souterrains dans le monde, destinés à l'évaluation de la faisabilité des différents concepts. Différentes formations-hôtes sont étudiées : tuf, granite, sel, argile, etc. Une installation pilote existe aux États-Unis pour le stockage de déchets militaires (WIPP). Quelques pays ont avalisé ce mode de gestion de long terme.

Transport du combustible nucléaire et des matières radioactives

Colis de déchets transuraniens Bien que le transport n'opère pas en lui-même de transformation du combustible, il fait partie intégrante du cycle du combustible. Les matières radioactives sont transportées sous forme solide, mis à part l'hexafluorure d'uranium considéré comme un gaz. Le transfert des assemblages neufs et usés ainsi que des matières radioactives et des déchets est réalisé dans des emballages spécifiquement conçus. Les contraintes liées à la radioactivité varient selon l'activité des matières. Alors que les assemblages neufs de combustible uranium émettent peu et ne nécessite pas de blindage, le combustible usé de même que les déchets de haute-activité demandent des précautions spécifiques.

Cycles du combustible actuellement mis en œuvre

La description des différents cycles est avant tout théorique. Dans la pratique, la gestion du parc est rarement figée à long terme et différentes options sont envisagées en fonction de l'évolution du contexte. Stratégies de gestion du combustible irradié mises en œuvre en 2002 Les cycles peuvent être comparés par leur bilan matière. Chaque étape du cycle produit des déchets dont la quantité peut être rapportée à la production électrique obtenue in fine. Les comparaisons s'appuient sur le calculateur de avec les paramètres par défaut et une production de 1 GW.ane.

Cycle à stockage direct

Théorie

Cycle à stockage direct Le cycle à stockage direct (sans retraitement) appelé once-through par les anglo-saxons, ce cycle est le plus classique. Le combustible uranium est irradié en réacteur puis entreposé pour stockage sans traitement (autre que conditionnement). Dans le cadre de ce scénario de cycle, le combustible irradié est considéré comme déchet ultime. Plusieurs filières de réacteur sont utilisées avec un tel cycle : REP, REB, CANDU notamment. La comparaison des 3 filières fait apparaître un arbitrage entre l'amont et l'aval du cycle. Un réacteur produit d'autant plus de déchets de faible activité (résidus miniers notamment) qu'il produit moins de déchets de haute activité (combustible irradié). C'est donc un arbitrage entre le volume des déchets et leur activité qui peut être réalisé à travers le choix d'une filière.

Mise en oeuvre

Il est une bonne approximation de la stratégie mise en œuvre pour le parc électronucléaire de 6 pays : États-Unis, Canada, Suède, Finlande, Espagne et Afrique du Sud - Bulletin de l'AIEA.

Cycle uranium avec mono-recyclage du plutonium

Théorie

Le combustible uranium enrichi est irradié en réacteur, avec un taux de combustion réduit par rapport à celui du cycle à stockage direct. Le combustible UOX irradié contient alors du plutonium avec une isotopie favorable (seuls les isotopes impairs du plutonium sont fissiles en spectre thermique). Cycle avec mono-recyclage du plutonium soit de plutonium (métal) pour pour se ramener à la même unité que pour le cycle à stockage direct. Le combustible irradié est retraité pour en extraire le plutonium qui, mélangé avec de l'uranium appauvri issu de l'étape d'enrichissement, est recyclé en combustible MOX (mixed oxide) neuf. Ce nouveau combustible est alors introduit en réacteur pour produire de l'énergie. L'uranium issu du retraitement, de même que les produits de fission et les actinides mineurs, sont des déchets ultimes destinés au stockage définitif. Le combustible MOX irradié est aussi un déchet ultime (pas de multi-recyclage). Sa thermicité nécessite un entreposage plus long que celui des autres déchets avant mise en stockage définitif. La base de comparaison retenue pour ce cycle est un parc chargé à en UOX destiné à un taux de combustion de et à en MOX destiné à un taux de combustion de . Dans un tel cycle, le plutonium formé dans le combustible UOX est intégralement utilisé pour la fabrication de combustible MOX. Le plutonium de seconde génération (formé dans le combustible MOX irradié) n'est pas recyclé. Ce cycle peut être comparé au cycle à stockage direct REP. Le mono-recyclage du plutonium permet une économie de ressources naturelles, ainsi qu'une moindre production de déchets dans l'amont du cycle. Le retraitement conduit à isoler le plutonium, ce qui est défavorable vis-à-vis de la non-prolifération. Les quantités de combustible usé à stocker définitivement sont moins importantes que dans le stockage direct d'un facteur 4, mais la thermicité est défavorable. Le retraitement permet une concentration des matières les plus actives et ainsi de spécialiser la gestion des déchets ultimes.

Mise en oeuvre

Ce cycle théorique est une bonne approximation du cycle actuellement mis en œuvre par la France, l'Allemagne, la Belgique et le Japon (parmi d'autres). En France par exemple, les réacteurs qualifiés pour utiliser du MOX (dits moxables) sont . Environ un tiers du cœur est chargé en combustible MOX tandis que les autres assemblages contiennent du combustible UOX. Les démonstrations de sûreté inhérentes à la conduite d'un réacteur ne permettent pas, en 2006, de charger plus de MOX dans un REP. Le réacteur EPR est conçu pour accepter jusqu'à de combustible MOX. En 2006, les États-Unis projettent de recourir au retraitement des combustibles irradiés ainsi qu'au recyclage du plutonium militaire.

Cycle uranium de retraitement

Théorie

Selon la gestion de cœur retenue (taux de combustion atteint notamment), l'enrichissement résiduel du combustible irradié est supérieur à la teneur en isotope 235 de l'uranium naturel. Il existe ainsi un potentiel de recyclage de cet uranium. Cycle avec mono-recyclage de l'uranium Dans ce scénario, le combustible UOX déchargé est retraité afin d'isoler l'uranium. Cet uranium de retraitement (URT) est alors ré-enrichi (URE). Il peut alors être utilisé pour fabriquer du combustible neuf. Ce combustible est alors introduit en réacteur au côté d'assemblages UOX "classiques". L'uranium du combustible irradié possède une isotopie dégradée par rapport à l'uranium neuf. La proportion de l'isotope 236 augmente. Or, cet isotope agit comme un poison neutronique par des captures stériles. Par ailleurs, les impuretés formées au cours de l'irradiation complexifient le retraitement. Pour ces raisons, en 2006, le retraitement n'est envisagé que pour l'uranium de première génération. Le multi-recyclage n'est considéré qu'à plus long terme. Par rapport à un cycle REP à stockage direct avec un taux de combustion identique, il y a un gain au niveau de la consommation de ressources, une moindre quantité de combustible irradié à stocker définitivement mais des déchets de retraitement à gérer. Ce cycle peut aussi être combiné avec un recyclage du plutonium.

Mise en oeuvre

De nombreux pays ont développé des programmes de recyclage de l'URT (notamment Suède, Belgique, Royaume-Uni ou encore Russie). L'utilisation de l'uranium de retraitement est favorisée dans un contexte de prix de l'uranium élevé.

Cycles du combustible prospectifs

Le développement des réacteurs de nouvelle génération s'accompagne de la mise au point de systèmes nucléaires au sens large qui intègrent le cycle du combustible. Ces cycles doivent répondent plus efficacement aux objectifs de développement durable, tout en intégrant les contraintes technologiques, économiques et (géo)politiques. Pays participants au Forum International Generation IV A l'initiative du DOE (Département à l'Energie) américain, la recherche sur les systèmes nucléaires de nouvelle génération a été internationalisée au sein du Forum International Génération 4. Cette collaboration vise à développer et promouvoir des systèmes nucléaires selon les critères :
- de durabilité (sustainability), que ce soit en terme de consommation de ressources ou de production de déchets,
- de performance économique par rapport aux autres énergies, ainsi que de maîtrise des risques financiers,
- de sûreté et de fiabilité,
- de résistance à la prolifération et aux menaces terroristes. D'autres pays ne participent pas directement au Forum International Génération 4 mais poursuivent leur propres recherches, bien souvent en collaboration avec les pays membres du forum. En 2006, le Département à l'énergie américain lance un nouveau projet de coopération internationale relatif aux technologies de retraitement : le partenariat mondial pour l'énergie nucléaire. Enfin, les pays qui ont décidé l'abandon de l'énergie nucléaire adaptent leur cycle en fonction de leur stratégie de gestion du combustible irradié.

Cycles classiques avec haut taux de combustion

Théorie

Depuis le début de la production électronucléaire, les exploitants cherchent à augmenter les taux de combustion par de nouveaux plans de chargement et des innovations techniques sur les crayons (poisons consommables et nouvel alliage de gaine par exemple). Cela consiste principalement en une augmentation de l'enrichissement initial du combustible (en uranium 235 ou en plutonium). Il existe ainsi une réserve de réactivité plus importante en début de cycle d'irradiation, ce qui permet de maintenir les crayons en cœur plus longtemps et donc d'augmenter le taux de combustion. Le taux de combustion final du combustible définit, avec la gestion du cœur (rechargement en 1/3, 1/4, etc.), la durée des cycles entre chaque arrêt de tranche pour rechargement. En allongeant la durée des cycles d'irradiation, l'augmentation des taux de combustion assure une meilleure disponibilité des centrales. Par ailleurs, les ressources fissiles sont utilisées plus efficacement. Les limitations à cette augmentation proviennent des contraintes de sûreté de fonctionnement ainsi que du comportement mécanique des crayons :
- la réactivité supplémentaire introduite en début de cycle d'irradiation doit être compensée par une augmentation de la concentration en bore dans l'eau du circuit primaire -limitée par la solubilité du bore- ainsi que par des crayons contenant des poisons consommables et dont l'anti-réactivité décroît au fur et à mesure de l'irradiation. Ces dispositions modifient le comportement du réacteur, en particulier en cas d'accident de vidange ;
- l'usure thermo-mécanique des gaines peut conduire à des phénomènes de flambage des crayons qui, en cas d'arrêt d'urgence, gêneraient la descente des barres. Des tests périodiques sont ainsi conduit en cours de cycle pour vérifier le bon fonctionnement des barres d'arrêt. Considérant les réacteurs innovants, les RNR à caloporteur sodium sont conçus pour des taux de combustion jusqu'à 100 GW.jr/tML. le développement des combustibles à confinant graphite (boulets notamment) pour les réacteurs à haute ou très haute température permet d'envisager des taux de combustion bien plus importants, de plusieurs centaines de GWjr/tML.

Mise en oeuvre

Le développement de nouveaux alliages de gaine (alliage M5 d'Areva notamment) permet d'atteindre de plus hauts taux de combustion dans les REP grâce aux propriétés mécaniques améliorées. Ainsi, en France, EDF envisage des taux de combustion de 52 puis 60 GWjr/tML pour le futur.

Multi-recyclage du plutonium en réacteurs à neutrons thermiques type REP

Théorie

Le combustible MOX irradié déchargé des réacteurs à eau légère contient encore une quantité siginificative de plutonium fissile. Le multi-recyclage du plutonium consiste à retraiter ce combustible irradié pour en extraire les matières valorisables puis fabriquer du combustible neuf. Dans ce scénario, les actinides mineurs et les produits de fission sont des déchets ultimes mis en stockage définitif. La mise en œuvre d'un tel cycle apparaît délicate au delà de 2 recyclages du fait de la montée des isotopes pairs dans le plutonium, isotopes qui ne sont pas fissiles en spectre thermique. Dans un combustible UOX irradié, la fraction des isototopes pairs est de l'ordre de 31.4% pour un combustible à 33 GWjr/tML à 39.1% pour un taux de combustion de 60 GWjr/tML.

Mise en oeuvre

En 2006, le multi-recyclage n'est pas mis en œuvre pour des contraintes de sûreté de fonctionnement.

Cycles surrégénérateurs

La surrégénération est la propriété d'un cycle au cours duquel la quantité de matière fissile formée est supérieure à la quantité de matière fissile consommée. Le taux de surrégénération est la quantité de matière fissile finale rapportée à la quantité de matière fissile initiale. Dans un réacteur avec une bonne économie de neutrons, les matériaux fertiles (disposés en couvertures ou bien mélangés aux fissiles) capturent des neutrons afin de former des matières fissiles. Étant donné que le nombre de neutrons émis par fission est supérieur à deux, il y a théoriquement la possibilité de fabriquer plus de matière fissile qu'il n'y en a de consommée. En effet, il faut un neutron pour alimenter la réaction nucléaire en chaîne et un neutron pour régénérer le combustible. Les neutrons excédentaires sont alors capturés pour fabriquer un surcroit de matière fissile. En pratique, les captures dans les structures et le caloporteur réduisent la quantité de neutrons disponible, ce qui constitue la contrainte première concernant le choix du caloporteur et de l'éventuel modérateur. Un cycle surrégénérateur correspond donc au multi-recyclage des matériaux fissiles. Le stock de matières fissiles initial (plutonium ou uranium 233 de retraitement, uranium enrichi) est reconstitué par captures fertiles et n'est donc pas consommé. Les ressources naturelles consommées correspondent uniquement aux matières fertiles (uranium 238 et thorium).

Cycles en réacteurs à neutrons rapides

Théorie
Un spectre rapide est obtenu lorsque le flux neutronique n'est pas modéré. Pour ce faire, le caloporteur ne doit pas être modérateur. Par ailleurs, la recherche d'un taux de surrégénération élevé conduit à privilégier un caloporteur peu capturant. Ces cycles impliquent ainsi des réacteurs à caloporteur gaz, sodium ou plomb-bismuth. Dans un réacteur à neutrons rapides, la surrégénération est obtenue par le retraitement du combustible irradié et des couvertures fertiles disposées en périphérie de cœur. Le plutonium est particulièrement performant en spectre rapide et un cycle uranium 238/plutonium est donc préféré à un cycle thorium/uranium 233 (qui reste envisageable).
Mise en oeuvre
Le cycle surrégénérateur en spectre rapide est le concept développé initialement en France avec Superphénix. Un réacteur à caloporteur sodium d'origine soviétique a fonctionné au Kazakstan et produit de l'eau potable par dessalement et de la chaleur pour alimenter un réseau de chauffage urbain. D'autres pays ont étudié ce cycle et font ou ont fait fonctionner des réacteurs de ce type, notamment le Japon et l'Inde.

Cycles en réacteur à neutrons thermiques

Théorie
Les réacteurs à sels fondus ont un cœur en graphite percé de canaux dans lesquels circule un sel de matières fissiles et fertiles. Le concept associe au réacteur une usine de retraitement en ligne chargée de séparer les produits de fission (ainsi qu'éventuellement les actinides mineurs) au fur et à mesure de leur production en réacteur. Comme pour les réacteurs rapides, des cycles uranium 238/plutonium ou thorium/uranium 233 sont envisageables. Considérant les bonnes propriétés neutroniques de l'uranium 233 en spectre thermique et épithermique, le cycle au thorium est privilégié. Un scénario de transition du parc REP vers un parc de RSF surrégénérateurs thorium/uranium 233 consisterait ainsi à brûler le plutonium existant en REP sur matrice thorium de sorte à constituer un stock d'uranium 233 pour le démarrage de RSF. L'avantage d'un cycle à base d'uranium 233 est de ne pas introduire d'uranium 238 en RSF et ainsi de limiter la production de plutonium et d'actinides mineurs, ce qui est favorable du point de vue déchets.
Mise en oeuvre
80px Le réacteur nucléaire de Shippingport a, au cours d'une irradiation expérimentale, démontré la faisabilité de la surrégénération en spectre épithermique, avec un combustible uranium 233 sur support thorium. Les réacteurs à sels fondus constituent l'une des options de recherche retenues dans le cadre du Forum International Generation IV.

Recyclage des actinides mineurs

Théorie

Le combustible UOX ou MOX irradié contient de l'uranium et du plutonium, des produits de fission et des actinides mineurs (américium, curium et néptunium). Alors que les produits de fission sont des déchets, les actinides mineurs sont potentiellement utilisables. Le recyclage des actinides mineurs consiste ainsi en leur séparation des autres composants du combustible irradié, puis leur irradiation en réacteur. Selon l'état-de-l'art des recherches menées en 2006, la faisabilité du recyclage des actinides mineurs en réacteur à eau légère est délicate sinon impossible. Le recyclage des actinides mineurs est envisagée dans des réacteurs à neutrons rapides ou dans des réacteurs hybrides type ADS (Accelerator Driven System ou réacteur piloté par accélérateur). Les différents cycles associés dépendent :
- du degré de séparation des actinides mineurs (isolation des 3 actinides, séparation conjointe du plutonium et de l'américium, etc.),
- de la possibilité de générer de l'énergie avec l'irradiation des actinides. Sur la base des cycles actuellement mis en œuvre, le recyclage des actinides mineurs peut prendre la forme d'un cycle de production d'actinides mineurs dans des REP électrogènes avec leur élimination dans des réacteurs électrogènes (réacteurs à neutrons rapides) ou dans des réacteurs "brûleurs" non électrogènes (réacteurs hybrides pilotés par accélérateur).

Mise en oeuvre

D'importantes recherches sont menées au plan international sur le recyclage des actinides mineurs. En France, les expérimentations dans les installations Atalante (séparation poussée) ou Phénix (transmutation) menées dans le cadre de la Loi Bataille participe de ces travaux.

Cycle DUPIC

Théorie

L'acronyme DUPIC signifie Direct Use of PWR fuel in CANDU. C'est donc l'utilisation du combustible uranium enrichi irradié en réacteur à eau sous pression dans des réacteurs à eau lourde CANDU. Lorsque le combustible uranium est déchargé des REP, sa teneur en uranium 235 reste supérieure à celle de l'uranium naturel. Étant données les très bonnes performances neutroniques des réacteurs CANDU (peu de captures stériles dans le modérateur), il est possible de fabriquer un combustible CANDU à partir du combustible irradié en REP sans étape de ré-enrichissement intermédiaire.

Mise en oeuvre

L'économie de ce cycle est discutable car le cycle DUPIC implique de ne pas élever les taux de combustion en REP, ce qui n'est pas favorable en terme de consommation des ressrouces en uranium. Le cycle DUPIC n'est pas mis en œuvre en 2006 et les recherches à son propos sont en suspens, notamment en Corée du Sud.

Voir aussi

===
Sujets connexes
AGR   Atalante (laboratoire)   Burnup   Chaleur   Combustible nucléaire   Complexe nucléaire Mayak   Cycle fermé   Déchet   Déchet radioactif   Développement durable   Eau lourde   Filière   Fission nucléaire   Flambage   Géologie   Hexafluorure d'uranium   Irradiation   Isotope   Laboratoire de recherche souterrain   Liste d'installations du cycle du combustible nucléaire   Liste des réacteurs nucléaires   Loi Bataille   Magnox   Malvesi   Neutronique   Partenariat mondial pour l'énergie nucléaire   Phénix (nucléaire)   Produit de fission   Prolifération nucléaire   Radioactivité   Radioactivité β   Radioprotection   Rayonnement ionisant   Recyclage   Retraitement nucléaire   Réacteur nucléaire   Réacteur nucléaire de Shippingport   Réacteur nucléaire piloté par accélérateur   Réacteur pressurisé européen   Réacteur à eau pressurisée   Réacteur à neutrons rapides   Réaction nucléaire   Sellafield   Superphénix   Surgénération   Thermalisation des neutrons   Transuranien   Usine de retraitement de West Valley   Usine de retraitement de la Hague   Waste Isolation Pilot Plant   Wise-Paris   Yellowcake  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^