Effet tunnel

Infos
L'effet tunnel désigne la propriété que possède un objet quantique de franchir une barrière de potentiel, franchissement impossible selon la mécanique classique. Généralement, la fonction d'onde d'une particule, dont le carré du module représente l'amplitude de sa probabilité de présence, ne s'annule pas au niveau de la barrière, mais s'atténue à l'intérieur de la barrière, pratiquement exponentiellement pour une barrière assez large. Si, à la sortie de la ba
Effet tunnel

L'effet tunnel désigne la propriété que possède un objet quantique de franchir une barrière de potentiel, franchissement impossible selon la mécanique classique. Généralement, la fonction d'onde d'une particule, dont le carré du module représente l'amplitude de sa probabilité de présence, ne s'annule pas au niveau de la barrière, mais s'atténue à l'intérieur de la barrière, pratiquement exponentiellement pour une barrière assez large. Si, à la sortie de la barrière de potentiel, la particule possède une probabilité de présence non nulle, elle peut traverser cette barrière. Cette probabilité dépend des états accessibles de part et d'autre de la barrière ainsi que de son extension spatiale.

Analyse

Au niveau théorique le comportement tunnel n'est pas fondamentalement différent du comportement classique de la particule quantique face à la barrière de potentiel ; elle satisfait à l'équation de Schrödinger, équation différentielle impliquant la continuité de la fonction d'onde et de sa dérivée première dans tout l'espace. De même que l'équation des ondes électromagnétiques mène au phénomène des ondes évanescentes, de même la fonction d'onde rencontre des cas où l'amplitude de probabilité de présence est non nulle dans des endroits où l'énergie potentielle est supérieure à l'énergie totale. Si, au niveau mathématique l'évaluation de l'effet tunnel peut parfois être simple, l'interprétation que l'on cherche à donner aux solutions révèle le fossé qui sépare la mécanique classique, domaine du point matériel suivant une trajectoire définie dans l'espace-temps, de la mécanique quantique où la notion de trajectoire simple disparaît au profit de tout un ensemble de trajectoires possibles, dont des trajectoires où le temps apparaît complexe ou imaginaire pur... où les vitesses deviennent imaginaires. On notera à ce propos que la durée de traversée tunnel d'une particule à travers une barrière quantique a été, et est encore, le sujet d'âpres discussions. Des études assez nombreuses dans le domaine électromagnétique ou photonique ont révélé l'apparition de ce que l'on peut interpréter comme des vitesses supraluminiques, respectant toutefois la relativité restreinte : il s'agit du phénomène connu sous le nom d'effet Hartman.

Applications

L'effet tunnel est à l'œuvre dans :
- les molécules : , par exemple,
- les modélisations des désintégrations (fission, radioactivité alpha),
- les transistors,
- certaines diodes,
- différent types de microscopes,
- l'effet Josephson. Cas particulier : l'effet tunnel résonnant.

Exemples

left Une onde plane correspondant à une particule d'une masse effective de 0, 067 fois la masse de l'électron, d'énergie 0, 08 eV est incidente sur une barrière de potentiel rectangulaire simple, de 0, 1 eV. Le schéma révèle la densité de probabilité de présence associée à cet état stationnaire. Le côté gauche révèle le phénomène d'interférence entre l'onde incidente et l'onde réfléchie. La partie tunnel (dans la barrière) provient de la combinaison de deux exponentielles, respectivement décroissantes de gauche à droite, et de droite à gauche. À droite, l'onde plane transmise se révèle par une densité de probabilité de présence constante. Fonction d'onde d'un électron à travers une barrière de potentiel Fonction d'onde d'un électron, représentant la densité de probabilité de sa position. La plus grande probabilité est que l'électron "rebondisse". Il existe une faible probabilité que l'électron franchisse la barrière de potentiel.

Analyses mathématiques

Introduction à la notion de transmittivité

La barrière quantique sépare l'espace en trois, dont les parties gauche et droite sont considérées comme ayant des potentiels constants jusqu'à l'infini (V_G à gauche, V_D à droite). La partie intermédiaire constitue la barrière, qui peut être compliquée, révélant un profil doux, ou au contraire formé de barrières rectangulaires, ou autres éventuellement en séries. right On s'intéresse souvent à la recherche des états stationnaires pour de telles géométries, états dont l'énergie peut être supérieure à la hauteur de potentiel, ou au contraire inférieure. Le premier cas correspond à une situation dénommée parfois comme classique, bien que la réponse révèle un comportement typiquement quantique ; le second correspond au cas où l'énergie de l'état est inférieure à la hauteur du potentiel. La particule à laquelle correspond l'état traverse alors la barrière par effet tunnel, ou, autrement dit, si l'on considère le diagramme énergétique, par effet saute-mouton. Envisageant une particule incidente depuis la gauche, l'état stationnaire prend la forme simple suivante : :\varphi(x) = \exp(ik_Gx)+r\exp(-ik_Gx) pour x
Sujets connexes
Amplitude   Barrière de potentiel   Demi-vie   Densité de probabilité   Diode   Effet Hartman   Effet Josephson   Effet tunnel résonnant   Exponentielle   Fonction d'onde   Hydrogénoïde   Interférence   Microscope à effet tunnel   Microscope électronique   Microscopie électronique en transmission   Mécanique quantique   Onde stationnaire   Particule élémentaire   Probabilité   Puits de potentiel semi-classique   Radioactivité α   Symétrie de Corinne   Transistor   Travail de sortie   Vitesse supraluminique  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^