Gamme pythagoricienne

Infos
La gamme pythagoricienne est une gamme musicale particulière, construite sur le cycle des quintes. Pour une présentation de synthèse, voir l'article Gammes et tempéraments qui donne aussi une vue d'ensemble des gammes de la musique occidentale classique. La gamme « pythagoricienne » ou de Pythagore remonte aux mathématiciens grecs de l'Antiquité: elle tire son nom de Pythagore, le philosophe connu en géométrie pour son célèbre théorème. La gamme pythagoricienne a
Gamme pythagoricienne

La gamme pythagoricienne est une gamme musicale particulière, construite sur le cycle des quintes. Pour une présentation de synthèse, voir l'article Gammes et tempéraments qui donne aussi une vue d'ensemble des gammes de la musique occidentale classique. La gamme « pythagoricienne » ou de Pythagore remonte aux mathématiciens grecs de l'Antiquité: elle tire son nom de Pythagore, le philosophe connu en géométrie pour son célèbre théorème. La gamme pythagoricienne a pour principaux inconvénients :
-la quinte du loup, intervalle inutilisable ;
-des intervalles de tierce majeure (DO-MI) qui sont assez loin de la consonance pure ;
-des tons diatoniques qui ne sont pas égaux et qui rendent problématiques la transposition (le jeu d'un même morceau avec une note tonique différente) et la modulation (le changement, même temporaire, de tonalité au cours du même morceau). De ce fait, elle n'est pratiquement pas utilisée de nos jours.

Généralités et historique

Historiquement, les premières traces d'une construction musicale en octaves et quintes justes remontent à l'antiquité chinoise. L'attribution en Occident de ce type de construction à Pythagore semble remonter au Moyen Âge alors qu'il ne semble pas avoir contribué directement à l'établissement d'une telle échelle. Il ne fait que fonder une pensée, qui tente d'englober tous les phéonomènes de l'univers, basée sur les quatre premiers nombres : 1, 2, 3 et 4. En effet, ces quatre nombres simples forment les rapports des intervalles d'octave (2/1), de quinte (3/2) et de quarte (4/3). Mais la théorisation de la gamme heptatonique par l'école des pythagoriciens est antérieure de deux siècles aux contacts, d'ailleurs très indirects, entre les mondes méditerranéen et chinois qui ont pu suivre les conquêtes d'Alexandre le Grand. Ainsi, il est presque certain qu'elle s'est faite sans référence au précédent chinois, qui a d'ailleurs donné naissance à une musique pentatonique très différente. L'harmonie des sphères, théorie d'origine pythagoricienne fondée sur l'idée que l'univers est régi par des rapports numériques harmonieux, et que les distances entre les planètes dans la représentation géocentrique de l'univers correspondent à des intervalles musicaux. À travers la période troublée des invasions barbares, la continuité de la tradition musicale grecque antique a été assurée en Europe, entre autres, par les chants de la liturgie chrétienne - le chant grégorien prenant sa source dès le sous l'impulsion du pape Grégoire le Grand. Parallèlement au développement de cette échelle dans la culture occidentale, nous la trouvons aussi dans les écrits arabes, notamment chez « les frères de la pureté » (Ikhwan al-Safa) et al-Kindī. La gamme pythagoricienne a été progressivement délaissée au bas Moyen Âge lorsqu'on a commencé à considérer comme consonnant l'intervalle de tierce. L'approche de la construction de la gamme pythagoricienne peut se faire sur des considérations d'acoustique ou de mathématiques.

Introduction musicale

Pour comprendre le principe de cette gamme, il suffit de se placer devant un piano et de partir du do le plus à gauche et d'avancer de quinte en quinte (il suffit de se déplacer de 7 touches en comptant les touches noires). On obtient successivement un sol, un , un la, un mi, un si, un fa&
-9839;
, un do&
-9839;
, un sol&
-9839;
, un ré&
-9839;
, un la&
-9839;
, un fa et ...un do ! Au bout de 12 quintes, on retombe sur un do situé 7 octaves plus loin. Ce qui fait dire que 12 quintes valent 7 octaves. La gamme pythagoricienne est la succession des notes obtenues par ce procédé et qui se trouvent diviser l'octave en intervalles grossièrement équivalents. Les notes non diésées sont au nombre de sept : la gamme diatonique est une gamme « heptatonique ». Sur un piano, elles seraient produites par les touches blanches. Quant à la gamme chromatique, composée de toutes les notes obtenues sauf celles qui font presque doublon (MI
- et SI
-) elle possède douze notes, et douze intervalles élémentaires. Les cinq notes complémentaires seraient, sur un piano, produites par les touches noires. Les notes avec bémol sont obtenues par un cycle de quintes juste successives, non en montant, mais en descendant. Mais le piano triche (voir gamme tempérée). La partie mathématique de cet article prouve l'impossibilité de cette égalité. Cycle des quintes et comma pythagoricien En effet, après avoir monté de douze quintes (multiplication de la fréquence par 3/2) et baissé le résultat de sept octaves (division par deux), la fréquence initiale a été multipliée par (3/2)^12 = 129.74... et divisée par 2^7=128, soit par 1.0136: le résultat s'écarte de 1.36% de la fréquence initiale, soit pratiquement un huitième de ton (23.46 cent, soit un comma). On est obligé d'introduire un intervalle de quinte légèrement faux (la « Quinte du loup ») pour maintenir des octaves pures, ce qui est souvent considéré par les musiciens comme nécessaire. Dans la pratique on s'arrangerait pour reporter la quinte du loup dans un intervalle peu usité, souvent MI&
-9837;-SOL&
-9839;. Placement de la quinte du loup La différence entre SI
- et DO, très minime mais audible, s'appelle le comma pythagoricien et son existence est communément traduite en ce que « le cycle des quintes » (voir figure) ne se referme pas. En avançant de quinte en quinte, on ne peut pas tomber sur 7 octaves à moins de raccourcir la dernière quinte dite « quinte du loup ». En effet, 12 quintes valent 312/212=129.74... et 7 octaves 27=128. On peut aborder cette construction par l'acoustique, en se fiant au sens de l'ouïe, ou par les mathématiques.

Construction par l'acoustique

Le schéma ci-dessus montre comment une montée par quintes successives à partir de do fait parcourir toutes les notes de la gamme chromatique avant de retrouver le do à l'octave. On abaisse la note obtenue d'une octave chaque fois qu'on « sort » de l'octave (marquée en bleu ciel). L'oreille permet, de façon intuitive et très précise (par l'absence de battements), d'identifier un intervalle d'octave ou de quinte. Partant d'une note quelconque et suffisamment basse, on détermine sa quinte puis la quinte de la note obtenue, de façon réitérée. Si on répète ce processus 12 fois, on s'aperçoit que la note finale est « pour ainsi dire » la septième octave de la note de départ. C'est ce que l'on appelle le « cycle des quintes » c'est-à-dire que 12 quintes équivalent à peu près à 7 octaves. En fait il y a un faible écart entre ces deux intervalles, qu'on appelle le « comma pythagoricien » (voir schéma). Ces constatations sont à la base de la gamme « pythagoricienne ». On peut recommencer le processus, en abaissant les notes successives obtenues d'une octave lorsque l'intervalle de quinte nous fait sortir de la première octave : lorsqu'on aura monté 12 intervalles de quintes, on aura dû abaisser 7 fois d'une octave pour retrouver, au comma pythagoricien près, la note initiale. On aura, ce faisant, remarqué que les notes successives obtenues se répartissent à peu près uniformément dans l'intervalle d'une octave. Nous aurons ainsi construit la « gamme pythagoricienne » à 12 intervalles, donc douze notes, compris dans l'octave. La conservation d'une octave pure est considérée par de nombreux musiciens comme incontournable. La dernière quinte de notre cycle (ou une autre quelconque) devra donc être conservée légèrement différente des autres, et sera relativement fausse : on l'appelle la « quinte du loup » ; elle donnera lieu aux différents « tempéraments » qui ont pour but d'en atténuer au maximum les inconvénients.

Description mathématique de la gamme

En reprenant l'exemple du préliminaire, on peut construire la suite des 12 premières quintes qui nous donnent 12 notes que nous appellerons par commodité b, c, d, e, f, g, h, i, j, k, l, m en partant de la note de base nommée « a ». (NB. ces lettres n'ont aucun rapport avec les notations anglo-saxonnes). Ces 12 notes sont présentées dans le tableau ci-dessous, avec leur écart avec la note de départ (a). Le calcul du dernier écart donne environ 129, 746 alors que l'écart de 7 octaves donne exactement 27 = 128. Les deux écarts sont différents. Les notes obtenues ont un écart relatif de :\frac/2^7 =\frac \approx 1, 0136 . Soit une différence de 1, 36%. Cet écart s'appelle le comma pythagoricien. Il est audible pour de nombreuses personnes, bien que très faible. Pour retomber sur 7 octaves justes, il est nécessaire de réduire une quinte (par exemple la dernière) : au lieu de prendre un écart de 3/2, on prend un écart de : \frac\frac=\frac\approx 1, 480 Un des reproches que l'on peut faire à cette suite de note c'est qu'elle laisse de grands « trous » puisqu'on avance de quinte en quinte. Mais nous avons aussi remarqué que deux notes séparées d'une octave portent le même nom. Il suffit donc d'abaisser toutes ces notes du nombre d'octaves suffisant pour qu'elles se retrouvent toutes dans la même octave. Il faut pour cela diviser leur fréquence par une puissance de 2. En effectuant cette opération et en ordonnant les notes par leur écart croissant, nous obtenons le tableau suivant On obtient ainsi les 12 notes de notre gamme. On peut s'intéresser à l'intervalle entre deux notes consécutives. Il suffit pour cela de faire le rapport de leurs fréquences. Nous obtenons alors le tableau suivant On constate, et ce fait est remarquable, que l'on n'obtient que deux valeurs possibles pour les écarts
-37/211 soit l'apotome
-28/35 soit le limma on peut calculer que l'apotome est supérieur au limma d'un comma pythagoricien. L'intervalle entre la note a et la note c étant le ton majeur, celui-ci égale un apotome + un limma : les « demi-tons » dans la gamme pythagoricienne ne sont donc pas de même valeur ! Mais cette gamme offre un autre désavantage, l'écart renversé de la quinte (qui devrait être la quarte) n'apparaît pas dans la liste (écart de 4/3). L'écart qui s'en approche le plus (d'un comma) est 311/217. On remplace donc cet écart par l'écart 4/3. Cela revient en fait à redonner à la dernière quinte sa taille réelle et à déplacer la quinte du loup à l'avant dernière position . On obtient alors le tableau suivant où la dernière ligne a aussi changé. Pour plus de lisibilité, on remplacera les écarts entre deux notes consécutives par la lettre A pour apotome et L pour limma. Il ne reste plus qu'à nommer les notes, soit 7 noms simples pour les fractions les plus simples (celles dont le numérateur et le dénominateur sont les plus petits) et 5 noms « altérés » pour les fractions les plus complexes (qui sont les dernières obtenues dans notre cycle des quintes). Les sept premières notes (notes « naturelles ») divisent l'octave en sept intervalles inégaux : il s'agit de la gamme heptatonique. Les notes altérées permettent d'obtenir des intervalles plus fins et presque égaux entre eux : il s'agit de la gamme chromatique. Ceci donne pour la gamme de do On remarque alors que les écarts d'un apotome se produisent quand on conserve la même note et qu'on l'altère : on appelle cet écart un demi-ton chromatique. On remarque d'autre part que les écarts d'un limma apparaissent entre deux notes ne portant pas le même nom : on appelle cet écart un demi-ton diatonique. Placement de la quinte du loup Le procédé ci-dessus est théorique. Dans la pratique - si tant est qu'on accorde encore des instruments à sons fixes selon la gamme de Pythagore - on s'arrange pour placer la « quinte du loup » sur un intervalle inusité où elle ne risque pas de se manifester - en général : SOL&
-9839;-MI&
-9837;. À noter que les intervalles « enjambant » la quinte du loup sont eux-mêmes faux et à éviter. Le bémol On a remarqué que la gamme qui vient d'être construite ne comporte que des notes diésées. De DO à DO&
-9839; : 1 apotome (1/2 ton chromatique) De DO&
-9839; à RÉ : 1 limma (1/2 ton diatonique) De DO à RÉ : 1 ton majeur On peut définir, en inversant l'ordre de l'apotome et du limma dans le ton majeur DO-RÉ, une nouvelle note intermédiaire, RÉ&
-9837; telle que De DO à RÉ&
-9837; : 1 limma (1/2 ton diatonique) De RÉ&
-9837; à RÉ : 1 apotome (1/2 ton chromatique) De DO à RÉ : 1 ton majeur Les notes avec bémol s'obtiennent, en partant de DO, par quintes descendantes successives (au contraire des dièses, par quintes ascendantes). On a ainsi, dans l'ordre : DO - FA - SI&
-9837; - MI&
-9837; - LA&
-9837; - RÉ&
-9837; - SOL&
-9837; - DO&
-9837; - FA&
-9837; - SI&
-9837;&
-9837; - MI&
-9837;&
-9837; - LA&
-9837;&
-9837; - RÉ&
-9837;&
-9837; Clavier à 19 touches par octave imaginé par Zarlino, distinguant dièses et bémols À partir de DO&
-9837; (assimilé à SI) les notes obtenues s'assimilent aux notes diatoniques au comma près : FA&
-9837; = MI SI&
-9837;&
-9837; = LA MI&
-9837;&
-9837; = RE LA&
-9837;&
-9837; = SOL RÉ&
-9837;&
-9837; = DO Les notes bémolisées sont inférieures d'un comma pythagoricien à leurs notes enharmoniques diésées (par exemple RÉ&
-9837; et DO&
-9839;). Attention : ceci ne vaut que pour la gamme de Pythagore. L'alchimie des chiffres dans la gamme pythagoricienne En reprenant la gamme construite précédemment et en faisant l'inventaire des écarts, on avait obtenu le tableau suivant Les observations précédentes permettent d'affirmer que
- un apotome - un limma = un comma pythagoricien
- un ton = un apotome + un limma
- une tierce (par exemple l'intervalle do-mi) = 2 apotomes + 2 limmas = 2 tons
- une quarte (par exemple l'intervalle do-fa) = 2 apotomes + 3 limmas = une tierce + un limma
- une quinte = 3 apotomes + 4 limmas
- une octave = 5 apotomes + 7 limmas on retrouve alors la relation entre 7 octaves et 12 quintes : : 12 quintes - 7 octaves = 36 apotomes + 48 limmas - 35 apotomes - 49 limmas : 12 quintes - 7 octaves = un apotome - un limma = un comma On conçoit sans peine que les mathématiciens de l'Antiquité, au vu de ces relations quelque peu magiques, prêtassent à la musique une origine divine. Plus près de nous, Rameau avait même dans l'idée que la musique était la base des mathématiques. Pour ceux que rebuteraient (on les comprend) les calculs de puissances de 2 et 3, le schéma ci-dessous résume les relations entre les différents intervalles de la gamme de Pythagore (remarquer le décalage de MI&
-9837; et SI&
-9837;) : center

Propriétés des intervalles

Une gamme pythagoricienne est toute gamme (ou échelle) musicale fondée uniquement sur des intervalles d'octaves et de quintes acoustiquement purs (sauf une) - les quartes, renversement des quintes, le sont alors aussi. Une propriété importante - et même fondatrice - d'une telle gamme est que douze quintes équivalent « presque » à sept octaves : on va considérer que ces intervalles sont équivalents. Toutefois il y a un écart résiduel que l'on appelle « comma pythagoricien » ou « ditonique ». Une propriété de la « gamme pythagoricienne » est l'intervalle de « diton » (deux tons « purs » successifs : 9/8x9/8) inférieur à une quarte. Le diton forme l'intervalle appelé « tierce pythagoricienne ». Il diffère d'une quarte de l'intervalle de « limma » (litt. « le reste »). C'est chez Platon (La République) que nous retrouvons les termes du rapport du « limma » (256/243) aucun texte de Pythagore ne nous est parvenu. La tierce pythagoricienne, de rapport 81/64 diffère légèrement de la tierce « pure », de rapport 5/4 ou encore 80/64. Il y a entre les deux un écart qu'on appelle « comma syntonique » et dont la valeur est assez proche du comma pythagoricien. Une gamme particulière peut se définir par ses écarts (en plus ou en moins) par rapport au tempérament égal. Ainsi, la gamme de Pythagore sera définie par:

Tableau de synthèse : notes, intervalles, fréquences

center

Un ton vaut-il 9 commas ?

Le tableau ci-dessous présente les écarts de fréquences (en valeur approchée) selon le nombre de commas Sachant qu'un ton vaut exactement 9/8 soit 1, 125, on voit qu'il y a entre 8 et 9 commas dans un ton (on prendra donc 9 commas) Sachant qu'un apotome vaut exactement 37/211 soit environ 1, 068, on voit que l'on peut raisonnablement dire qu'il y a 5 commas dans un apotome. Enfin, sachant qu'un limma vaut exactement 28/35 soit environ 1, 053, on voit que l'on peut considérer qu'un limma vaut 4 commas. C'est pourquoi on considère souvent que l'octave vaut 53 commas (soit 7x4 + 5x5) : cette égalité n'est toutefois qu'une approximation (car élever le nombre 312/219 à la puissance 53 ne peut évidemment donner 2 pour résultat exact). Cette approximation est à la base de l'affirmation générale selon laquelle :
- un demi-ton diatonique vaut 4 commas ;
- un demi-ton chromatique vaut 5 commas ;
- un ton vaut 9 commas. On aura compris qu'implicitement, le comma dont il est question est le comma pythagoricien et qu'il ne s'agit pas de valeurs exactes. On définit le « comma de Holder » comme divisant exactement 53 fois l'octave. Ce comma, fort proche du comma pythagoricien est à la base d'un tempérament par division multiple.

Voir aussi

Articles en relation

- Gammes et tempéraments
- Comma
- Gamme naturelle
- Gamme tempérée
- Tempérament
- Tempérament mésotonique
- Tempérament inégal
- Tempérament par division multiple
- Son (physique)
- Cycle des quintes

Autres articles

- Glossaire théorique et technique de la musique occidentale
- Gamme pharaonique

Bibliographie et sources

-Pierre-Yves Asselin : Musique et tempéraments (Québec), Editions Jobert, 2000 - ISBN 2-905-335-00-9
-Devie Dominique, Le tempérament musical, philosophie, histoire, théorie et pratique, Librairie Musicale Internationale, Marseille (seconde édition 2004).
-
-Patrice Bailhache : Une histoire de l'acoustique musicale - CNRS Editions Paris 2001 - ISBN 2-271-05840-6
-Moreno Andreatta : "Méthodes algébriques en musique et musicologie du XXe siècle : aspects théoriques, analytiques et compositionnels", thèse, EHESS/IRCAM, 2003 (disponible en ligne à l’adresse: http://www.ircam.fr/equipes/repmus/moreno/).
-Edith Weber : La résonance dans les échelles musicales, révision d’Edmond Costère, Revue de musicologie, T.51, N°2 (1965), pp. 241-243 - doi:10.2307/927346
-Edmond Costère : Lois et styles des harmonies musicales, Paris, PUF, 1954.
-Edmond Costère : Mort ou transfiguration de l’harmonie, Paris, PUF, 1962.
-Franck Jedrzejewski: Mathématiques des systèmes acoustiques. Tempéraments et modèles contemporains, L’Harmattan, 2002.
-Guerino Mazzola : The Topos Geometry of Musical Logic (in Gérard Assayag et al. (éd.) Mathematics and Music, Springer, 2002, pp. 199-213).
-Guerino Mazzola : The Topos of Music, Birkhäuser Verlag, Basel, 2003.
-François Nicolas : Quand l’algèbre mathématique aide à penser (et pas seulement à calculer) la combinatoire musicale, Séminaire, Ircam, février 2003 (disponible en ligne à l’adresse : http://www.entretemps.asso.fr/Nicolas/TextesNic/mamux.html).
-E. Lluis-Puebla, G. Mazzola et T. Noll (éd.) : Perspectives of Mathematical and Computer-Aided Music Theory, EpOs, Université d’Osnabrück, 2004.
-http://www.univosite.com/gammepythagore.html Catégorie:Justesse ca:Escala pitagòrica cs:Pythagorejské ladění de:Pythagoreische Stimmung en:Pythagorean tuning es:Afinación pitagórica hu:Püthagoraszi hangolás it:Scala pitagorica ja:ピタゴラス音律 ko:피타고라스 음률 lt:Pitagoriškoji intonacija nl:Stemming van Pythagoras ru:Пифагорейский строй sv:Pythagoreisk stämning uk:Піфагорійський стрій
Sujets connexes
Al-Kindi (philosophe)   Battement   Comma   Cycle des quintes   Gamme musicale   Gamme naturelle   Gamme pharaonique   Gamme tempérée   Gammes et tempéraments   Glossaire théorique et technique de la musique occidentale   Grèce   Géométrie   Harmonie des sphères   Ikhwan al-Safa   Intervalle (musique)   Jean-Philippe Rameau   Loup (musique)   Modulation (musique)   Musique classique   Octave (musique)   Oreille   Pythagore   Quarte   Quinte   Son (physique)   Tempérament   Tempérament inégal   Tempérament mésotonique   Tempérament par division multiple   Transposition  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^