Idéographie

Infos
L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but représenter de manière parfaite la logique mathématique.
Idéographie

L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but représenter de manière parfaite la logique mathématique.

Introduction

Le projet d'un langage entièrement formalisé n'est pas nouveau: Leibniz avait déjà lui-même développé un tel projet sous le nom de caractéristique universelle mais sans réussir à aboutir.

Naissance de l'idéographie

La première publication portant sur l'idéographie est le texte éponyme Idéographie (Begriffschrift) publié en 1879. Frege continua à travailler à l'idéographie dans Les Fondements de l'arithmétique (Die Grundlagen der Arithmetik, 1884).

Repésentation graphique de l'idéographie

Ce langage utilise le plan comme espace de travail et ne se limite pas à la ligne (comme la logique d'aujourd'hui, basée sur les Principia Mathematica de Bertrand Russell et Alfred North Whitehead qui en est tributaire). Ce langage est aujourd'hui inutilisé même s'il en subsiste des traces par exemple dans le symbole de négation « ¬ », de conséquence « ⊢ » ou de tautologie « ⊨ ». L’implication est exprimée par Frege ainsi, quand on a deux propositions A et B, on a 4 cas :
- A est affirmé et B est affirmé
- A est affirmé et B est nié
- A est nié et B est affirmé
- A est nié et B est nié L’implication B implique A (B⊃A) nie le troisième cas, en d’autres termes il est faux qu’on a à la fois B vrai et A faux. L'idéographie est construite sur l’implication, ce qui facilite l’usage de la règle du détachement, c'est-à-dire que si A est vraie et si A implique B est vraie, alors B est aussi vraie (A ∧ (A⊃B)) ⊃ B. Elle contient le quantificateur universel ∀, codé par un petit creux surmonté d'une lettre gothique qui remplace le trait ─ (pas disponible en unicode). Le carré logique est aussi présent. Elle contient aussi la définition, codée dans l'idéographie par le caractère unicode suivant : ╞═.

Dépassement de la logique de Frege

La présentation axiomatisée de logique chez Frege qui repose sur l'idéographie utilisée entre autres dans les Lois fondamentales de l’arithmétique (Grundgesetze der Arithmetik) a été mise à mal par le paradoxe de Russell. Elle contient en plus de la version de 1879 la loi V qui aboutit à une contradiction comme ∃x (F(x)∧¬F(x)). L'idéographie de 1879 et les théorèmes des Grundgesetze der Arithmetik utilisant cette loi V sont tout de même valides. Cette loi V exprime que deux extensions de concepts sont identiques quand ils ont les mêmes cas de vérités, soit comme l’écrit Frege dans les Lois fondamentales ἐF(ε) = ἀG(α) = ∀x(F(x) = G(x)), ce qui établit une équipotence (même cardinal) entre l’ensemble des extensions de concepts et celui des concepts, ce qui est contredit par le fait qu’un ensemble a un cardinal strictement inférieur à celui de l’ensemble de ses sous-ensembles. De plus, un corollaire de cette loi V est que tout concept admet une extension, y compris les plus farfelus comme celui-ci « être une extension du concept sous lequel on ne tombe pas » qui, exprimé dans l’idéographie des Lois fondamentales ainsi x=εF ∧ ¬F(x), aboutit au paradoxe du barbier.

Bibliographie

- Idéographie, Gottlob Frege, Vrin, 1999
- Les fondements de l’arithmétique, Gottlob Frege, L’ordre philosophique, Seuil, 1969

Lien Exterieur

- . Page particulièrement fournie sur le symbolisme introduit par Frege, en anglais.

Voir aussi

- Gottlob Frege
- Histoire de la logique
- Logique
- Calcul des propositions ==
Sujets connexes
Alfred North Whitehead   Bertrand Russell   Calcul des propositions   Caractéristique universelle   Carré logique   Conséquence   Contradiction   Friedrich Ludwig Gottlob Frege   Histoire de la logique   Implication   Les Fondements de l'arithmétique   Logique   Négation   Paradoxe de Russell   Paradoxe du barbier   Principia Mathematica   Proposition (mathématiques)   Tautologie  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^