Jeu (mécanique)

Infos
En mécanique, le jeu est l'espace laissé entre deux pièces assemblées imparfaitement. Comme il est impossible de réaliser des pièces avec une géométrie parfaite, le jeu est une nécessité dans l'assemblage des éléments d'un mécanisme. La considération industrielle du problème a produit la notion de tolérancement, qui définit les classes de qualité d'assemblage et fixe les règles de l'emploi du jeu mécanique. La maîtrise de cette différence de dimensions ré
Jeu (mécanique)

En mécanique, le jeu est l'espace laissé entre deux pièces assemblées imparfaitement. Comme il est impossible de réaliser des pièces avec une géométrie parfaite, le jeu est une nécessité dans l'assemblage des éléments d'un mécanisme. La considération industrielle du problème a produit la notion de tolérancement, qui définit les classes de qualité d'assemblage et fixe les règles de l'emploi du jeu mécanique. La maîtrise de cette différence de dimensions réelles entre une pièce contenant et une pièce contenue, par exemple, relève des talents du concepteur (pour la décision) et du fabricant (pour la réalisation). « Le jeu, c'est l'âme de la mécanique. »

Jeu dans un assemblage de deux pièces uniquement

300 px L'assemblage de deux pièces s'emboîtant par des formes complémentaires est appelé ajustement. C'est le cas des gonds d'une porte. La coïncidence parfaite de ces formes complémentaires ne peut pas être envisagée, même dans le cas d'un travail unitaire (artisanat). Le défaut existe de toute façon, même à très petite échelle. Il existe donc une différence de dimension qu'on appelle le jeu mécanique. Derrière cette appellation se dégage cependant une connotation industrielle, et c'est dans ce contexte que les différentes notions liées au jeu, et plus particulièrement au tolérancement, prennent leur sens entier.

Ajustement unitaire

300 px Avec deux pièces unitaires, si on exclue le cas improbable de l'égalité des dimensions, on observe deux cas d'assemblage:
-avec jeu (positif) : la pièce contenant est, dans l'absolu, plus grande que la pièce contenue; le montage est alors possible. C'est le cas du tiroir de commode, ou plus précisément d'un piston de moteur dans sa chemise.
-avec serrage: lorsque la pièce contenant est plus petite que la pièce contenue, le montage ne peut se faire qu'après déformation locale des pièces. C'est le cas du bouchon de liège dans le goulot de bouteille, ou de la frette.

Ajustement de deux séries de pièces

400 pxSi on considère à présent deux séries de pièces, le problème diffère légèrement: chaque pièce admissible à une dimension réelle appartenant à un intervalle de tolérance. De ce fait le montage de deux pièces prises au hasard dans les deux séries (ou population au sens statistique) dépend de la position relative des intervalles de tolérance. Les intervalles peuvent être disjoints dans un ordre ou l'autre, ou alors se rencontrer.

Calcul du jeu

Dans le cas d'un ajustement, le jeu est la différence des dimensions des pièces. Si on considère l'incertitude de la dimension de chaque population de pièces, alors le jeu possède également une incertitude. Par convention, on détermine le jeu comme étant la différence: Jeu = D_ - d_ Le jeu est naturellement positif lorsque l'ajustement est glissant. Les cotes des pièces étant comprises chacune dans le intervalle de tolérance, le jeu résultant est de valeur variable. On calcul alors les valeurs extrêmes: Le jeu maximum étant alors: J_ = D_ - d_ (1) et le jeu minimum : J_ = D_ - d_ (2) L'intervalle de tolérance note IT est l'écart entre les cotes extrêmes admissibles. De ce fait, une soustraction membre à membre des deux équations ci-dessus donne: IT_ = J_-J_ = ( D_- d_ ) - ( D_- d_ ) IT_ = IT_ + IT_ Cette équation montre que la qualité d'un jeu, c’est-à-dire son incertitude, doit être partagée entre les deux pièces. Un jeu précis nécessitera des pièces d'autant plus précises.

Familles d'ajustements

On distingue alors 3 types d'ajustements: 400 px
-avec jeu: pour toute pièce contenant et toute pièce contenue pris dans les deux populations, le contenant est plus grand que le contenu. C'est le cas recommandé pour les guidages qui ne doivent pas coïncer.
-serré: pour toute pièce contenant et toute pièce contenue pris dans les deux populations, le contenant est plus petit que le contenu. C'est le cas d'assemblages qui doivent transmettre des efforts. L'embiellage indémontable du moteur de la 2CV citroën, est obtenu par assemblage serré de pièces plus simples.
-avec jeu incertain: toutes les combinaisons n'aboutissent pas forcément à un jeu de même signe. Ce cas peut poser des soucis lors de l'assemblage à la chaîne. On utilise rarement ce cas, seulement pour des couvercles. Le travail de normalisation a abouti au système ISO d'ajustements qui fournit un outil pratique de décision prenant en compte la dimension nominale des deux pièces et le type de montage envisagé.

Jeu ne constituant pas un ajustement: chaîne de cotes

Exemple de jeu dépendant de trois pièces: chaîne de cotes.

Identification du jeu

L'exemple ci-contre donne la représentation d'un levier (en bleu) articulé sur un bâti (en jaune) par l'intermédiaire d'un axe (en rouge). L'axe est ajusté d'une part avec le levier (ajustement glissant) et le bâti. Dans la direction axiale, il y a aussi nécessité d'un jeu afin que la rotation du levier ne soit pas freinée par d'éventuels frottements. Si le levier est plaqué contre le bâti, ce jeu se dessine à gauche du levier entre son flan et le dessous de la tête de l'axe.

Représentation vectorielle

Ce jeu axial peut se représenter par un vecteur, dont la norme est la distance entre les deux faces des pièces concernées. Par convention, on oriente vers la droite ou vers le haut les vecteurs jeu. Afin de le distinguer des autres cotes (relatives à une pièce) il est marqué d'un trait double.

Chaîne de côtes

L'objectif de l'étude est la détermination des éléments ayant une influence sur le jeu, donc sur sa maîtrise. Dans un cas aussi simple cela n'est pas trop difficile:
- si le levier est plus épais alors le jeu diminue.
- si la longueur de l'axe augmente, alors le jeu aussi.
- si la profondeur du lamage du bâti augmente, l'axe pénétrant plus à l'intérieur le jeu diminue. Dans un mécanisme plus complexe, la détermination n'est pas toujours aussi simple. Le recours à la chaîne de côte est la démarche univoque permettant de désigner les cotes de pièces ayant une influence sur le jeu. L'idée est la suivante: si le mécanisme est correctement tassé, c’est-à-dire avec toutes les pièces calées par contact franc, le jeu est concentré en un seul endroit. Ainsi, en passant de surface d'appui en surface d'appui, on peut parcourir un chemin depuis l'origine du vecteur jeu jusqu'à son extrémité. En partant de la base du vecteur, située ici sur une face de l'axe, on cherche une autre face de l'axe en appui avec une autre pièce. Ici on tombe sur le fond du lamage, frontière commune avec le bâti. On recherche alors une autre surface d'appui du bâti avec une autre pièce, en l'occurrence le levier dont une face est à l'extrémité du jeu. Apparaissent alors trois maillons d'une chaîne constitués chacun d'une cote unique de chaque pièce. On notera que l'orientation des maillons n'est pas anodine, et correspond à l'approche intuitive précédente:
- les cotes orientées vers la droite (sens positif du jeu) font augmenter le jeu.
- les cotes orientées vers la gauche (sens négatif) font diminer le jeu. Dans des cas plus compliqués la solution n'est pas toujours aussi triviale. Cependant elle existe toujours et est unique. La recherche des surfaces d'appui est le seul recours y menant systématiquement. S'il n'y a pas d'appui au bout de la cote, c'est qu'elle ne fait pas partie de la chaîne. Dans ces conditions, chaque pièce ne peut intervenir qu'une seule fois au plus. Parfois il est plus pratique de prendre la chaîne à l'envers. Cela ne pose aucun problème puisque l'orientation des maillons est liée à celle du jeu. Par soucis de clarté, le jeu est repéré par la lettre J indicée (J_a sur l'exemple). Les cotes sont alors nommées a avec, en indice, leur repère sur le plan d'ensemble (a_1, a_2, a_3). Si le jeu traduit une condition de fonctionnement du mécanisme, chaque cote est alors un élément de cotation fonctionnelle de la pièce, et fait lors l'objet d'une attention plus serrée qu'une simple cote dimensionnelle.

Relations mathématiques

Les éléments de la chaîne sont des vecteurs colinéaires. On peut donc les projeter sur leur direction commune ce qui donne une équation. Par convention, les cotes sont positives (sens pratique d'une dimension réelle). Le jeu lui même est positif, ce qui borne naturellement l'étude. De l'équation vectorielle: \vec=\vec+\vec+\vec on obtient la relation : J_a= a_1 - a_2 - a_3 Comme dans le cas de l'ajustement, les cotes ne sont pas des dimensions exactes fixes, mais aux valeurs appartenant à un intervalle de tolérance. Il en découle que le jeu possède lui aussi sont intervalle de tolérance. On détermine alors le jeu maximal lorsque les cotes orientées positivement sont au maximum, et les cotes orientées négativement au minimum: (1) J_amax= a_1max - a_2min - a_3min De même le jeu minimal est obtenu lorsque les cotes orientées positivement sont au minimum, et les cotes orientées négativement au maximum: (2) J_amin= a_1min - a_2max - a_3max En soutrayant membre à membre les deux relation précédentes, on obtient une relation sur les intervalles de tolérance: (1)-(2) IT_= IT_ + IT_ + IT_ Il en résulte que comme dans le cas de l'ajustement, l'incertitude du jeu est la somme des incertitudes des pièces. Lorsqu'un jeu dépend d'un nombre de pièces trop grand, il n'est pas possible de lui garantir une grande précision qui serait décuplée une fois reportée sur les pièces.

Considération du jeu dans la modélisation des liaisons

La modélisation des liaisons mécaniques s'appuie d'abord sur l'analyse de la géométrie de contact entre deux pièces. Dans un premier temps lorsque les géométries sont considérées parfaites, on obtient un premier modèle présentant un certain nombre de degré de liaison. En posant l'existence d'un jeu, de toute façon réel, certains degrés de liaison disparaissent. Cela revient à considérer que les pièces flottent dans cet espace rendu disponible par le jeu. Cela suppose que le mécanisme est conçu pour assurer aux pièces des positions exploitant ces jeux (alignements corrects). Liaison annulaire théorique et solution par assemblage cylindrique avec jeuAinsi, une liaison obtenue par emboîtement, sans jeu, deux cylindres complémentaires parfaits, constitue une liaison pivot glissant. Si on ajoute un jeu radial à cet ajustement, et qu'on diminue la longueur de portée, alors les deux cylindres peuvent se déplacer latéralement (mais cela reste imperceptible) et obliquer par rapport à la direction de l'axe. La liaison est alors une liaison linéaire annulaire. Cette considération est importante lors de l'étude statique des mécanismes. Elle élimine d'emblée des inconnues de liaison, et contribue ainsi à garantir l'existence d'une solution au système d'équations représentant les conditions d'équilibre. Roulement à une rangée de billesDe même, et contrairement aux apparences, les roulements à billes rigides à une rangée de billes constituent une liaison rotule entre leurs bagues intérieure et extérieure. Du fait du jeu réel entre les billes et les bagues, un déversement (ou rotulage) est possible et cependant très faible. Le montage du roulement dans un système mécanique doit garantir que le roulement fonctionne normalement sans atteindre la butée du déversement qui conduirait à un endommagement prématuré. Cela suppose les portées des roulements suffisamment coaxiales. Ainsi un arbre guidé par deux roulements de ce type, est tenu au bâti par une liaison pivot, qui sera considéré comme l'association de deux rotules ou d'une rotule et une annulaire suivant les options de montage (arrêt axiaux des bagues)

Approche multidimensionnelle

L'ensemble de l'article traite le cas de jeux unidimensionnels (déplacement des pièces en translation suivant une seule direction). La prise en compte de jeux multidimensionnels fait intervenir les mêmes outils mathématiques que ceux employés en mécanique du solide (déplacement suivant les 6 degrés de liberté. De par la complexité des calculs, ces considérations sont le plus souvent traitées empiriquement.

Chaîne spatiale de cotes

- graphes de liaisons
- surfaces fonctionnelles

Calcul de jeux multidimensionnels

Catégorie:Génie mécanique Catégorie:Construction mécanique
Sujets connexes
Ajustement (mécanique)   Bielle   Bouchon à vin   Chaîne (mécanique)   Citroën 2CV   Cotation (dessin industriel)   Cotation fonctionnelle   Degré de liberté (mécanique)   Frettage   Frottement   Hasard   Industrie   Intervalle (mathématiques)   Lamage   Maillon   Moteur   Mécanique   Mécanique du solide   Piston   Probabilité   Statique du solide   Statistique   Système ISO d'ajustements   Système ISO de tolérances   Vecteur  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^