Surface de Riemann

Infos
En géométrie différentielle, une surface de Riemann est une variété différentielle analytique complexe de dimension 1. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann. Toute surface réelle orientable peut être munie d'une structure complexe, autrement dit être regardée comme une surface de R
Surface de Riemann

En géométrie différentielle, une surface de Riemann est une variété différentielle analytique complexe de dimension 1. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann. Toute surface réelle orientable peut être munie d'une structure complexe, autrement dit être regardée comme une surface de Riemann. Cela est précisé par le théorème d'uniformisation. L'étude des surfaces de Riemann est à la croisée de nombreux autres domaines mathématiques dont, hormis la géométrie différentielle, la théorie des nombres, la topologie algébrique, la géométrie algébrique, les équations aux dérivées partielles...

Théorie élémentaire

Définition

Une surface de Riemann est un espace topologique séparé et dénombrable à l'infini X, admettant un atlas modelé sur le plan complexe C dont les applications de changement de cartes sont des applications biholomorphes. Autrement dit X admet un recouvrement par des ouverts Ui homéomorphes à des ouverts de C ; ces cartes dites holomorphes f_i:U_i \to V_i sont telles que les fonctions de changement de cartes f_i\circ f_j^ soient des fonctions holomorphes entre ouverts de C. On peut ajouter de nouvelles cartes tant qu'elles sont compatibles avec les précédentes au sens où les applications de changement de carte restent holomorphes. De fait, il existe ainsi un atlas maximal pour la surface de Riemann. On identifiera deux structures de surface de Riemann sur un même espace topologique lorsqu'elles sont compatibles, c'est-à-dire conduisent au même atlas maximal. Si X et Y sont deux surfaces de Riemann, une application de X dans Y est dite holomorphe lorsque, lue dans les cartes holomorphes, elle est holomorphe. Le plan complexe C s'identifie naturellement à R2. Comme holomorphe implique différentiable, toute surface de Riemann hérite d'une structure de variété différentielle de dimension 2. Comme toute application holomorphe préserve l'orientation de C, toute surface de Riemann hérite d'une orientation en tant que variété réelle. De fait : :Toute surface de Riemann se présente comme une surface réelle orientée. Ces considérations se généralisent pour toutes les variétés holomorphes. Par contre, toute variété différentielle réelle orientée de dimension paire n'admet pas forcément de structure complexe. C'est un fait remarquable en dimension 2, que toute surface réelle orientée admet effectivement une structure de surface de Riemann. Mais cette structure n'est pas forcément unique.

Exemples

- Le plan complexe C se présente très simplement comme surface de Riemann. L'identité permet de définir un atlas réduit à une unique carte.
- Le plan complexe conjugué \overline est topologiquement C, mais on le munit comme unique carte de la conjugaison complexe.
- La plus simple des surfaces de Riemann compactes est la sphère de Riemann. Topologiquement, elle est définie comme le compactifié d'Alexandroff du plan complexe, à savoir S2 = C ∪ . Elle est recouverte de deux cartes holomorphes, définies respectivement sur C et C
-∪ : l'identité z\mapstoz et l'inversion z\mapsto1/z.
- Le plan projectif complexe P1C est une autre représentation de la sphère de Riemann. Elle apparait comme le quotient de C2- par l'action naturelle par multiplication du groupe \mathbb C^
- (passage au quotient pour les variétés analytiques).
- Le plan hyperbolique \mathbb H^2 est un exemple fondamental de surface de Riemann correspondant au disque ouvert de C, ou au demi plan supérieur, ou encore, par le théorème d'uniformisation, à tout ouvert simplement connexe de \mathbb C ( et différent de \mathbb C). Pour juger de l'importance de ces exemples : Le revêtement universel de toute surface de Riemann connexe est une surface de Riemann simplement connexe isomorphe à \mathbb C, ou à \mathbb S^2 ou à \mathbb H^2. Par exemple : \mathbb C^
- est le quotient du plan complexe \mathbb C par le groupe des translations 2i\pi\mathbb Z. Plus précisément, le revêtement \mathbb C\rightarrow\mathbb C^
- est donné par l'exponentielle complexe.

Surfaces hyperboliques

Le groupe projectif PGL2(R) agit transitivement sur \mathbb H^2. Une surface hyperbolique est le quotient de \mathbb H^2 par une action proprement discontinue et sans point fixe d'un sous-groupe discret \Gamma. D'après la théorie des revêtements, le groupe fondamental de la surface obtenue X est isomorphe à \Gamma. Si \Gamma\sub PSL_2(\mathbb R), la variété obtenue est orientable et peut être munie d'une structure de surface de Riemann.

Géométrie de Riemann pour les surfaces

Il convient a priori de distinguer les surfaces de Riemann, variétés analytiques complexes de dimension 1 et les variétés riemanniennes qui sont des surfaces, c'est-à-dire des variétés de dimension deux munies d'un tenseur métrique. Pourtant les deux notions sont très voisines. Si Σ est une surface orientée munie d'une structure de variété riemannienne, il est possible de définir une structure presque complexe associée J sur Σ, qui est toujours intégrable, c'est-à-dire que Σ peut être naturellement vue comme une surface de Riemann. L'application J est définie sur chaque espace tangent en exigeant que J(v) soit de même norme que v et que (v, J(v)) soit orthogonal direct. Réciproquement, si Σ est une surface de Riemann, il est possible de définir plusieurs métriques riemanniennes compatibles avec sa structure complexe. Parmi elles, il en existe une telle que la variété riemannienne obtenue soit complète et de courbure constante -1, 0 ou 1. Une telle métrique est unique à un facteur près.

Voir aussi

Références

- Hershel M. Farkas et Irwin Kra, Riemann Surfaces (1980), Springer-Verlag, New York. ISBN 0-387-90465-4
- Jürgen Jost, Compact Riemann Surfaces (2002), Springer-Verlag, New York. ISBN 3-540-43299-X
- Eric Reyssat, Quelques aspects des surfaces de Riemann (1989), Birkhaüser, Boston. ISBN 0-8176-3743-5 ===
Sujets connexes
Bernhard Riemann   Compactifié d'Alexandroff   Courbe pseudoholomorphe   Courbure   Espace topologique   Groupe fondamental   Géométrie algébrique   Géométrie différentielle   Orientation (mathématiques)   Plan complexe   Revêtement (mathématiques)   Sphère de Riemann   Structure presque complexe   Séparation (mathématiques)   Tenseur métrique   Théorie des nombres   Topologie algébrique   Variété différentielle   Variété riemannienne  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^