Silicium

Infos
Le silicium est un élément chimique de la famille des cristallogènes, de symbole Si et de numéro atomique 14. C'est l'élément le plus abondant sur la Terre après l'oxygène (27, 6%). Il n'existe pas à l'état libre mais sous forme de composés : sous forme de dioxyde, la silice (dans le sable, le quartz, la cristobalite, etc . . .) ou de silicates (dans les feldspath, la kaolinite, etc.). Il est utilisé depuis longtemps sous forme d'oxyde de silicium amorphe (silice ou
Silicium

Le silicium est un élément chimique de la famille des cristallogènes, de symbole Si et de numéro atomique 14. C'est l'élément le plus abondant sur la Terre après l'oxygène (27, 6%). Il n'existe pas à l'état libre mais sous forme de composés : sous forme de dioxyde, la silice (dans le sable, le quartz, la cristobalite, etc . . .) ou de silicates (dans les feldspath, la kaolinite, etc.). Il est utilisé depuis longtemps sous forme d'oxyde de silicium amorphe (silice ou SiO2) comme composant essentiel du verre. Il a de nouveaux usages en électronique, pour la production de matériaux tels que les silicones ou pour fabriquer des modules solaires photovoltaïques. Le nom dérive du latin silex, ce qui signifie caillou ou silex.

Caractéristiques

Poudre de silicium Polycristal de silicium Les cristaux de silicium sont gris à noirs, en forme d'aiguille ou d'hexaèdres (forme cubique). La phase amorphe est une poudre marron foncée. Le silicium est un semi-conducteur d'électricité, sa conductivité électrique est très inférieure à celle des métaux. Il est quasi insoluble dans l'eau. Il est attaqué par l'acide fluorhydrique (HF) ou un mélange acide fluorhydrique/acide nitrique (HNO3) en fonction de la phase. Le silicium présente des reflets métalliques bleutés, mais n'est pas du tout aussi ductile que les métaux. Il existe trois isotopes naturels du silicium: 28Si (92, 18%), 29Si(4, 71%) et 30Si(3, 12%). Il existe également des isotopes artificiels instables : 25Si, 26Si et 27Si qui sont émetteurs β, ainsi que 31Si à 34Si qui sont émetteurs β.

Découverte

Un des composés du silicium, la silice (dioxyde de silicium), était déjà connu dans l'Antiquité. La silice a été considérée comme élément par les alchimistes puis les chimistes. C'est un composé très abondant dans les minéraux. Du silicium a été isolé pour la première fois en 1823 par Jöns Jacob Berzelius. Ce n'est qu'en 1854 que Henry Sainte-Claire Deville obtient du silicium cristallin.

Utilisations

Alliages Aluminium-Silicium

La principale utilisation du silicium en tant que corps simple est comme élément d'alliage avec l'aluminium. Les alliages Aluminium-Silicium (AS ou série 40000 suivant NF EN 1780-1) sont utilisés pour l'élaboration de pièces moulées, en particulier pour l'automobile (par exemple jantes en alliage) et l'aéronautique (par exemple éléments de moteurs électriques embarqués). Les alliages Aluminium-Silicium représentent à peu près 55 % de la consommation mondiale de silicium.

Synthèse des silicones

La synthèse des silicones représente également une utilisation importante du silicium (environ 40 % de la consommation). Ces polymères n sont utilisés dans des mastics pour joint, des graisses résistantes à l'eau ou conductrices de la chaleur, les poudres lessivielles ou les shampoings conditionneurs, etc.

Semi-conducteur

Les propriétés de semi-conducteur du silicium ont permis la création de la deuxième génération de transistors, puis les circuits intégrés (les « puces »). C'est aujourd'hui encore l'un des éléments essentiels pour l'électronique, notamment grâce à la capacité technologique actuelle permettant d'obtenir du silicium pur à plus de 99, 99999% (tirage Czochralski, zone fondue flottante). La magie de la lithographie sur silicium : les productions commerciales courantes (2007) de circuit intégré réalisent la prouesse d'une finesse de gravure de 45 nm sur des plaques de 30 cm (12 pouces, la taille d'un disque 33 tours). Ce qui permettrait de graver 600 millions de sillons (soit un disque de 20 millions de minutes, environ 40 ans de musique, ou bien de l'ordre de 20 milliards de chansons au format numérique Ogg Vorbis).

Photovoltaïque

Cellule photovoltaïque en silicium En tant que semi-conducteur, le silicium est aussi l'élément principal utilisé pour la fabrication de cellules solaires photovoltaïques. Celles-ci sont alors montées en panneaux solaires pour la génération d'électricité.

Composants mécaniques

Le silicium présente à l'état pur des caractéristiques mécaniques élevées qui le font utiliser pour la réalisation de petites pièces destinées à certains micromécanismes et même à la fabrication de ressorts spiraux destinés à des montres mécaniques haut de gamme.

Micro et nanostructure

Du fait de la performance des procédés de gravure et de formation de forme avec le silicum, le silicum est utilisé pour :
- la formation de silicum nanoporeux pour dissocier l'hydrogène de l'oxygène de molécule d'eau dans les piles à combustibles,
- la formation de nanopics sur une surface de silicum par Gravure Ionique Réactive (RIE) en vue de relier des puces de semi-conducteurArticle de la Vigie Optoélectronique de l'Agence pour la Diffusion de l’Information Technologique (Adit), numéro 116, octobre 2006, .

Composés

Outre les propriétés du silicium élémentaire, de nombreux composés du silicium possèdent des applications. Parmi les plus connus :
- La silice se trouve dans la nature sous forme compacte (galets, quartz filonien par exemple), ou sous forme de sable plus ou moins fin. On l'obtient aussi industriellement, sous forme pulvérulente. Elle a de nombreux usages :
- le verre est fabriqué depuis des millénaires en faisant fondre du sable principalement composé de SiO2 avec du carbonate de calcium CaCO3 et du carbonate de sodium Na2CO3. Le verre peut être amélioré par différents additifs.
- le sable de silice est un des composants des céramiques.
- le quartz forme de superbes cristaux, est utilisé comme matériau transparent, plus résistant à la chaleur que le verre (ampoule de lampes halogènes). Il est également beaucoup plus difficile à fondre et à travailler.
- la silice intervient aux côtés du carbone dans la fabrication des pneumatiques économes en énergie.
- la silice très fine est utilisée comme constituant d'adjuvants pour les bétons à haute performance.
- Le ferro-silicium, le silico-calcium, sont utilisés comme éléments d'addition dans l'élaboration de l'acier ou de la fonte.
- Le carbure de silicium possède une structure cristalline analogue à celle du diamant ; sa dureté en est très proche. Il est utilisé comme abrasif ou sous forme céramique dans les outils d'usinage.
- Le silicate de calcium CaSiO3 est un des composants des ciments. :Il faut signaler, pour éviter une fréquente erreur de traduction depuis l'anglais, que l'anglais silicon signifie silicium, tandis que silicone correspond bien au silicone. De son côté, "silica" désigne la silice.

Dans la nature

Minéraux

Le silicium sur terre se trouve essentiellement sous forme minérale, et en particulier sous forme de silicates, qui constituent 97 % de la croûte terrestre. Le silicium est par exemple constitutif du sable de silice, résultat de la dégradation de roches comme le granit.

Molécules organiques

Le silicium se trouve dans certaines molécules organiques, comme les silanes — méthylsilanetriols, diméthylsilanediol —, les silatranes.

Biologie du siliciumBirchall, J. D. (1990) The role of silicon in biology. Chemistry in Britain: 141-144

Les diatomées, présentes dans le plancton, participent au cycle géochimique du silicium dans les mers, car elles extraient la silice pour former leurs membranes externes. L'organisme humain contient entre 200 mg et 7 g de silicium, suivant les sources. Le silicium se retrouve dans tous les glycosaminoglycanes et polyuronides : chondroïtine sulfate, dermatan-sulfate, kératan-sulfate, héparan-sulfate et héparine. L’acide hyaluronique est la macromolécule la plus riche en silicium. Le silicium est aussi impliqué dans la synthèse du collagène (3 à 6 atomes de Si par chaîne alpha) et de l'élastine. Le silicium est un constituant important de la paroi artérielle. L'aorte se trouve être le tissu qui en contient le plus avec la peau et le thymus. Le taux de silicium dans ces tissus diminue avec l'âge dans des proportions très importantes (perte supérieure à 60-70 %). Le silicium potentialiserait l'action du Zinc (Zn) et du Cuivre (Cu) et permettrait la fixation du Calcium (Ca). Les céréales et l'eau de boisson (dont la bière fabriquée à partir d'eau et de céréales) apportent naturellement la quantité suffisante (25 mg par jour) pour satisfaire les besoins (environ 5 mg/jour). L'Afssa (Agence Française de Sécurité Sanitaire des Aliments) n'a pas défini d'apports nutritionnels conseillés pour le silicium car ils sont largement couverts par l'alimentation. Par abus, certains parlent de « silice organique ». Il semble que cette dénomination soit plutôt un procédé commercial dans le domaine des médecines parallèles.

L'hypothétique biochimie à base de silicium

À la limite de la science et de la science-fiction, de multiples travaux visent à mettre en évidence la possibilité d'une toute autre forme de vie, basée non pas sur le carbone, mais sur le silicium. Ceci se base sur le fait que le silicium est non seulement tétravalent comme le carbone, mais qu'il est susceptible de former des complexes penta- et hexa-coordinés chargés et stables. Ils pourraient avoir des propriétés catalytiques intéressantes qui ont été peu explorées dans les hypothèses exobiologiques. Il faut cependant noter que le silicium n'a qu'une faible capacité à former des liaisons multiples, puisque l'énergie de dissociation des liaisons π est beaucoup plus faible que celle des liaisons π impliquant le carbone F. A. Cotton, G. Wilkinson, P. L. Gaus, Basic Inorganic Chemistry, John Wiley & Sons, New York, 1987, ISBN 0-471-85151-5. La position médiane actuelle semble être négative, le silicium ne participant que peu à des réactions biologiques mais servant plutôt de support (enveloppes, squelettes, gels, ...).

Production industrielle du silicium

Le silicium n'existe pas naturellement à l'état libre sur la terre, mais il est très abondant sous forme d'oxydes, par exemple la silice ou les silicates. Le silicium est extrait de son oxyde par des procédés métallurgiques, et son niveau de pureté dépend de son utilisation finale.

Pureté du silicium

Barreau de silicium de qualité solaire On distingue trois niveaux de pureté du silicium, désignés en fonction de l'utilisation :
- Silicium métallurgique (pureté 99%), noté MG-silicium (en anglais : metallurgical grade),
- Silicium de qualité solaire (pureté 99.9999%), noté SoG-silicium (solar grade),
- Silicium de qualité électronique (pureté 99.99999999%), noté EG-silicium (electronic grade).

Production du silicium métallurgique

Pour obtenir du silicium libre (parfois appelé improprement "silicium métal" pour le distinguer du ferrosilicium), il faut le réduire ; industriellement, cette réduction s'effectue par électrométallurgie, dans un four à arc électrique ouvert dont la puissance peut aller jusqu'à environ 30 MW. La réaction globale de principe est une réaction de carboréduction : :::SiO2 + C → Si + CO2 La réalité est plus complexe, avec des réactions intermédiaires conduisant par exemple à la formation de SiC, de SiO (instable). En pratique, le silicium est introduit sous forme de morceaux de silice (galets, ou morceaux de quartz filonien), en mélange avec des réducteurs tels que le bois, le charbon de bois, la houille, le coke de pétrole. Compte tenu des exigences de pureté des applications finales, la silice doit être relativement pure (faible teneur en oxyde de fer en particulier), et les réducteurs soigneusement choisis (houille lavée par exemple). Le mélange est déversé dans un creuset de plusieurs mètres de diamètre, où plongent des électrodes cylindriques en carbone (trois le plus souvent) qui apportent la puissance électrique et permettent d'atteindre les très hautes températures dont les réactions recherchées ont besoin (autour de 3000°C dans la région de l'arc électrique, à la pointe des électrodes). Le silicium obtenu est recueilli dans des "poches", à l'état liquide, grâce à des orifices pratiqués dans le creuset. Il est ensuite affiné dans ces poches, par injection d'air pour oxyder l'aluminium et le calcium. Puis il est séparé du "laitier" (oxydes produits au cours des différentes étapes du procédé et entraînés avec le silicium) avant d'être solidifié :
- soit par coulée en lingotières ou sur une surface plane,
- soit par granulation à l'eau (le silicium liquide est alors versé dans de l'eau et les gouttes de silicium se solidifient en petits granules : opération relativement délicate). Les réactions intermédiaires conduisant à la réduction du silicium produisent aussi une très fine poussière de silice amorphe, qui est entraînée par les gaz chauds (essentiellement air et dioxyde de carbone) émis par le four ; dans les pays développés, ces gaz sont filtrés pour recueillir la poussière de silice amorphe, qui est utilisée comme élément d'addition dans les bétons à haute performance. Selon les applications, le silicium est utilisé sous forme de morceaux (production des alliages aluminium-silicium) ou sous forme de poudre obtenue par broyage (production des silicones). Le silicium pour électronique est obtenu à partir du silicium électrométallurgique, mais nécessite une étape chimique (purification réalisée sur des silanes) puis un ensemble de purifications physiques, avant le tirage des monocristaux.

Préparation du silicium dans son utilisation pour l'industrie électronique

; Préparation du Si pur L'opération s'effectue à partir du trichlorosilane (SiHCI3), ou du tétrachlorure de silicium (SiCl4), ou du tétraiodure de silicium (SiI4), etc. Par exemple, en attaquant du siliciure de cuivre à 300°C par de l'acide chlorhydrique il se forme du trichlorosilane ; ce corps est purifié par une distillation très poussée ; il est ensuite décomposé à 950°C en présence d'hydrogène ; on obtient des blocs compacts de silicium très pur (procédé Pechiney). ; Préparation du monocristal Barreau 302 grammes (10, 3 cm de long x 4 cm de diamètre) de silicium polycristallin destiné à la production de silicium monocristallin par le procédé Czochralski Monocristal de silicium On désire obtenir des monocristaux de type N ; or le silicium obtenu chimiquement contient toujours quelques traces de bore et il est de type P ; on le cristallise donc et on le transforme en semi-conducteur de type N. Principe : On place dans un creuset en quartz une quantité de silicium correspondant sensiblement au poids du monocristal à obtenir ; on ajoute le dopeur donneur d'électrons ; aucune impureté ne doit perturber la cristallisation ; l'opération doit donc se dérouler dans une enceinte hermétiquement close, d'une propreté "chirurgicale", et dans une atmosphère neutre, ou sous vide. Réalisation : Autour de l'enceinte isolante en quartz est placé l'inducteur d'un générateur haute fréquence qui permet de porter le mélange Si-dopeur à la température de fusion, soit 1 500°C environ. Lorsque la fusion est totale, l'opération de cristallisation peut commencer ; à cet effet, un système mécanique de précision présente le germe monocristal au contact du bain, puis le soulève verticalement, très lentement, tout en lui imprimant une très lente rotation qui aide à l'homogénéisation. Le germe entraîne le silicium qui se trouve alors soustrait à l'action de l'induction HF ; le Si se refroidit donc et cristallise suivant l'ordonnancement fixé par le germe. L'opération est très délicate ; la vitesse de levage doit être constante afin de ne pas perturber la formation du cristal ; la température du bain doit être également constante, à 0, 1°C près (et ceci vers 1 500°C). L'homogénéisation, aidée par les deux mouvements de levage et de rotation, est primordiale ; en effet, à mesure que l'opération progresse, le bain risque de voir sa concentration en impuretés augmenter si celles-ci présentent plus d'affinité pour la phase liquide que pour la phase solide. Le monocristal obtenu se présente sous la forme d'un cylindre à peu près régulier, de 25 à 50 mm de diamètre ; on le sectionne à ses deux extrémités : la tête, qui est très pure, servira de germe pour une opération ultérieure ; le bas, qui risque de ne pas être assez pur, est rejeté. ; Préparation des rondelles Conditions à remplir : Du fait du prix très élevé du silicium monocristallin, il faut éviter la perte de matière pendant la préparation des rondelles. Celles-ci sont très fragiles ; il faut donc éviter toute contrainte pouvant les déformer ou les briser. Par ailleurs, l'état de surface des rondelles doit être aussi parfait que possible. Enfin le traitement ne doit pas « polluer » le monocristal. Le tronçonnage : Le silicium est découpé en rondelles de 0, 2 à 0, 3 mm d'épaisseur au moyen d'une scie circulaire de grande précision. Le travail s'effectue dans l'eau afin d'éviter tout échauffement et toute pollution. Les déchets étant importants, les boues sont filtrées et la poudre de silicium est récupérée et utilisée à nouveau. Rodage des faces : Il a pour but d'éliminer les irrégularités de surface provoquées par les grains de poudre de diamant lors du tronçonnage ; il s'effectue avec de la poudre de carborundum. Après le rodage mécanique, un rodage chimique vient supprimer les dernières irrégularités et la couche superficielle qui peut avoir été polluée. À cet effet, on utilise des bains d'acides forts (acides fluorhydrique et nitrique) ; puis les rondelles sont rincées soigneusement et séchées. Cette attaque chimique peut être remplacée ou complétée par un polissage électrolytique. ; Découpage des pastilles On découpe les rondelles en un très grand nombre de pastilles, avec précision, la largeur du trait de découpe étant aussi faible que possible (0, 125 à 0, 15 mm). Les bavures de découpage sont ensuite éliminées par attaque chimique suivie d'un rinçage.

Voir aussi

Références

===
Sujets connexes
Abrasif   Acide   Acide chlorhydrique   Acide fluorhydrique   Acide hyaluronique   Acide nitrique   Acier   Alliage   Alliages d'aluminium pour fonderie   Aluminium   Amorphe   Aorte   Arc électrique   Automobile   Aéronautique   Bacillariophyta   Bore   Béton   Calcium   Carbone   Carboréduction   Carbure de silicium   Charbon de bois   Ciment   Coke   Collagène   Creuset   Cristal   Cristallisation   Cristallogène   Cristallogénèse   Cristobalite   Croûte terrestre   Cuivre   Céramique   Diamant   Dioxyde de carbone   Distillation   Eau   Feldspath   Fonderie d'aluminium   Fonte (métallurgie)   Four à arc électrique   Fusion (physique)   Glycosaminoglycane   Granit   Hexaèdre   Houille   Hydrogène   Isotope   Jöns Jacob Berzelius   Kaolinite   Laitier   Liaison covalente   Liaison π   Liste des éléments par symbole   Mastic   Matière amorphe   Numéro atomique   Oxyde   Oxygène   Peau   Pechiney   Pile à combustible   Plancton   Pneumatique (véhicule)   Quartz (minéral)   Radioactivité β   Rouille (oxyde)   Réducteur   Réduction   Sable   Semi-conducteur   Silane   Silex   Silicate   Silice   Silicium   Terre   Thymus (anatomie)   Transistor   Tétrachlorure de silicium   Tétravalence   Verre   Watt  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^