Adénine

Infos
Structure chimique de l'adénine Représentation tridimensionelle de l'adénine L’adénine est un composé essentiel au vivant. On retrouve cette molécule partout dans le corps, seule ou agencée à plusieurs autres molécules différentes, jouant ainsi plusieurs rôles.
Adénine

Structure chimique de l'adénine Représentation tridimensionelle de l'adénine L’adénine est un composé essentiel au vivant. On retrouve cette molécule partout dans le corps, seule ou agencée à plusieurs autres molécules différentes, jouant ainsi plusieurs rôles.

Définition

L’adénine est une molécule chimique de formule brute C5H5N5, appartenant à la famille des purines. Son nom chimique est 1, 6-dihydro-6-iminopurine, on peut aussi l’appeler 6-aminopurine ou encore amino-6-purine. L’adénine est une molécule hétérocyclique, c’est-à-dire qu’elle contient des hétérocycles. Par définition, un hétérocycle est un cycle qui n’est pas exclusivement constitué de carbone. L’adénine possède en effet plusieurs atomes d’azotes associés en cycle avec des atomes de carbone. L'adénine est aussi une base azotée entrant dans la constitution des nucléotides, composants de base (ou monomères) des acides nucléiques. Finalement, l’adénine est considérée également par certains ouvrages comme étant la vitamine B4. Par définition, une vitamine est une substance que l’on ne synthétise pas par nous-même et donc que l’on doit s’approprier dans notre alimentation. Toutefois, les carences associées à la vitamine B4 sont rares car pratiquement tout ce que nous ingérons contient de l’adénine, et principalement dans la levure de bière, le pain et le thé. De très rares carences peuvent être causées par certains médicaments comme les sulfamidés. Pour cette raison, certains affirment qu’il ne s’agit pas d’une vitamine au sens propre du terme.

Origine prébiotique

Il a été prouvé que l'adénine pouvait se concevoir à partir de cinq molécules (donc un pentamère) d’acide cyanhydrique de formule brute HCN. En effet, des expériences de biochimie prébiotique montrent que de l'acide cyanhydrique à l'état liquide va spontanément permettre l'apparition d'une infime quantité d'adénine.

Caractéristiques

Complémentarité

On dit de l’adénine qu’elle est une base azotée complémentaire. En effet, cette complémentarité s’observe principalement dans les acides nucléiques où l’adénine se lie par deux liaisons hydrogène avec la thymine dans l’ADN ou l’uracile dans l’ARN. La thymine et l’uracile sont d’autres bases azotée de la famille des pyrimidines.

Caractéristiques physicochimiques

Point de fusion

Le point de fusion de l'adénine se situe entre 360 et 365 °C. Il s’agit d’un point de fusion relativement élevé pour un composé organique. Cela s’explique entre autres par l’organisation spatiale des molécules les unes par rapport aux autres dans le milieu. En fait, ces molécules ont des domaines accepteurs de liaisons hydrogène et donneurs de liaisons hydrogène, elles participent donc à plusieurs de ces liaisons. Les molécules d’adénine sont donc associées en « réseau », retenues fortement les unes aux autres par ces liaisons hydrogène. Plus les molécules sont bien retenues ensembles, plus il faudra fournir d’énergie (par exemple : de la chaleur) pour les dissocier et donc de passer de la phase solide à la phase liquide.

Masse atomique

La masse atomique de l'adénine est de 135 128 daltons. On obtient cette masse atomique en additionnant la masse de chaque atome présent dans la molécule. Les masses respectives de chaque atome sont biens connues et sont habituellement données dans le tableau périodique des éléments.

Utilités

L'adénine est un composé qui possède plusieurs utilités. Au cours de l'évolution, il semble que l'adénine ait été un composé « apprécié » par les organismes vivants de par son efficacité. Il s'avère donc qu'au cours de la diversification de l'immense quantité de réactions chimiques se déroulant dans les organismes vivants, l'adénine s'est retrouvée à jouer plusieurs rôles clés. Voici donc les principaux composés dans lesquels l'adénine prend part.

Nucléotide

L'adénine entre dans la composition des nucléotides. Ces derniers sont entre autres les monomères, ou matières premières, des acides nucléiques. Le nucléotide contenant de l'adénine et que l'on retrouve dans l'ADN se nomme désoxyadénosine monophosphate tandis que celui composant l'ARN se nomme adénosine monophosphate. Dans les nucléotides, l'adénine se lie à un pentose, le (désoxyribose dans le cas de l’ADN ou ribose dans le cas de l’ARN) qui lui-même se lie à un groupement phosphate en position 5 du sucre. Dans ces nucléotides, l’adénine est appelée la base azotée et elle détermine les caractéristiques propres au nucléotide. Ils ne sont pas hydrophobes contrairement aux bases azotées substituées.

Adénosine triphosphate

L'adénosine triphosphate ou ATP, est également un nucléotide, la seule différence entre celui-ci et ceux présents dans les acides nucléiques réside au niveau du nombre de groupements phosphate attachés au nucléoside (un nucléoside est un nucléotide sans groupement phosphate). En fait, comme leurs noms l'indiquent, l’adénosine triphosphate possède trois groupements phosphate et l'adénosine monophosphate n’en possède qu'un. L'ATP est une molécule haute en énergie, il sert donc de monnaie d’échange énergétique. Il est présent partout dans l’organisme et est éventuellement hydrolysé pour fournir l'énergie nécessaire à une réaction nécessitant un apport énergétique que l'on qualifie de réaction ATP dépendante comme les contractions musculaires, certains échanges ioniques, certaines réactions enzymatiques, l'activation de plusieurs protéines, la migration des vésicules intracellulaires, et bien d’autres. L'ATP est un des produits du catabolisme des nutriments (principalement les sucres comme le glucose) que l’on s’approprie en mangeant. L'ATP est formée principalement dans les mitochondries lors du processus de la chaîne de transport d’électron, une étape parmi d’autres figurant dans le processus de désintégration des sucres.

Adénosine monophosphate cyclique

L'adénosine monophosphate cyclique ou AMPc est le produit de la transformation de l'ATP par une enzyme nommée adénylyl cyclase, qui réside dans les membranes cellulaires. L'AMPc est un second messager jouant un rôle important de signalisation cellulaire dans un processus nommé transduction de signaux. L’AMPc joue aussi un rôle de régulation de l’expression de certains gènes. Chez Dictyostelium discoideum, une amibe, l'adénosine monophosphate cyclique permet de signaler à un individu la proximité d'un autre membre de son espèce. En effet, dans des conditions où les nutriments viennent à manquer dans le milieu, tous les individus de cette espèce tendent à se regrouper pour former une entité holistique plus grande capable de mieux supporter les contraintes de l'environnement. Ce regroupement s'opère par chimiotropisme de l'adénosine monophosphate cyclique, c'est-à-dire que chaque individu émet un pseudopode (bras cytoplasmique) dans la direction d’un gradient d'AMPc détecté, donc une région à haute teneur en AMPc. Ces amibes sécrètent de l’AMPc à leur tour pour attirer leurs congénères vers elles. Il existe aussi des moyens employés par Dictyostelium discoideum pour que chaque individu n'émette pas d'AMPc de façon à se désorienter lui-même.

D’autres molécules contenant de l’adénine

La nicotinamide adénine dinucléotide ou NAD+, un dérivé de la niacine ainsi que la flavine adénine dinucléotide ou FAD, un dérivé de la riboflavine, sont des coenzymes importants dans les voies oxydatives. Ces molécules sont réduites sous les formes respectives de NADH et FADH2 lors des différentes étapes d’oxydation du catabolisme des sucres. Ils sont réduits en acceptant des atomes d’hydrogènes.

Les autres bases azotées

- De la famille des purines : :
- Guanine :
- Hypoxanthine
- De la famille des pyrimidines : :
- Cytosine :
- Thymine :
- Uracile

Bibliographie

- Donald Voet et Judith G. Voet, Biochimie, De Boeck Université, Paris, 1998.
- Elaine N. Marieb, Anatomie et physiologie humaine, Éditions du renouveau pédagogique Inc., Montréal, 1999.
- Neil A. Campbell, Biologie, Éditions du renouveau pédagogique Inc., Montréal, 1995.
- Wayne M Becker, Lewis J. Kleinsmith et Jeff Hardin, The World of the Cell 5th edition, Benjammin Cummings, San Francisco, 2003. Catégorie:Nucléoside ar:أدينين ca:Adenina cs:Adenin da:Adenin de:Adenin el:Αδενίνη en:Adenine eo:Adenino es:Adenina et:Adeniin fi:Adeniini gl:Adenina he:אדנין hu:Adenin id:Adenin it:Adenina ja:アデニン lt:Adeninas ms:Adenina nl:Adenine no:Adenin pl:Adenina pt:Adenina ru:Аденин sh:Adenin simple:Adenine sk:Adenín sl:Adenin sr:Аденин sv:Adenin tr:Adenin uk:Аденін vi:Adenine zh:腺嘌呤
Sujets connexes
Acide désoxyribonucléique   Acide nucléique   Acide ribonucléique   Adénosine monophosphate cyclique   Adénosine triphosphate   Amibe   Atome   Azote   Base azotée   Carbone   Carence   Catabolisme   Chaleur   Chimie organique   Coenzyme   Cytosine   Désoxyribose   Enzyme   Espèce   Flavine adénine dinucléotide   Glucose   Guanine   Gène   Hydrogène   Hydrolyse   Hypoxanthine   Hétérocycle   Liaison hydrogène   Masse atomique   Membrane (biologie)   Mitochondrie   Molécule   Monomère   Montréal   Médicament   Nicotinamide adénine dinucléotide   Nucléoside   Nucléotide   Organisme vivant   Pain   Paris   Pentose   Phosphate   Pseudopode   Purine   Pyrimidine   Ribose   Réduction   San Francisco   Sucre   Sulfamidé   Tableau périodique des éléments   Température de fusion   Thymine   Thé   Transduction de signaux   Tropisme   Unité de masse atomique   Uracile   Vitamine   Vitamine B  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^