Losange

Infos
right Dans un espace affine normé, un losange est un parallélogramme ayant deux côtés consécutifs de même longueur.
Losange

right Dans un espace affine normé, un losange est un parallélogramme ayant deux côtés consécutifs de même longueur.

Propriétés

Propriété 1

Pour tout quadrilatère d'un plan affine euclidien (espace affine euclidien de dimension 2) les propositions suivantes sont équivalentes :
- Le losange est un quadrilatère.
- Le losange a ses quatre côtés de même longueur.
- Le losange est un parallélogramme et ses diagonales sont perpendiculaires. Ces équivalences sont cependant en défaut dans le cas d'un losange aplati (le point 3 n'a alors pas de sens) : Losange aplati ABCD

Preuve

Soit ABCD un quadrilatère. Soit I le milieu de et J le milieu de . Comme A \neq C on peut parler de la médiatrice d_ de . Comme B \neq D on peut parler de la médiatrice d_ de . Montrons (1) implique (2) : On suppose que ABCD est un losange. Comme c'est un parallélogramme, on a AB = CD, BC = AD et comme c'est un losange, on a AB = CB. Par transitivité, AB = BC = CD = DA. Montrons (2) implique (3) : On suppose que AB = BC = CD = DA. De AB = BC et CD = DA, on conclut (DB) = d_ . Ainsi (DB) est perpendiculaire à (AC) et I appartient à (DB) et (AC). De BC = CD, on conclut que C \in d_. On a (DB)\perp(AC) et (d_)\perp(BD) donc (d_)\parallel(AC) . Comme d_ et (AC) ont le point C en commun, on conclut que d_ = (AC) et donc que J appartient à (AC) et (BD). Comme (AC) et (BD) sont perpendiculaires, elles ont un unique point commun et donc I = J. ABCD a ses diagonales qui se coupent en leur milieu, c'est donc un parallélogramme. Montrons (3) implique (1) : On suppose que (AC) et (BD) sont perpendiculaires et que ABCD est un parallélogramme. Comme (AC) est perpendiculaire à (BD) et passe par J, on conclut que (AC) = d_ et donc que CB = CD.

Propriété 2

Les diagonales d'un losange sont les bissectrices de ses angles.

Preuve

Soit un losange ABCD de centre O. La propriété 1 entraîne que les triangles ABO, CBO, ADO et CDO sont superposables. D'où : \widehat = \widehat = \widehat = \widehat \widehat = \widehat = \widehat = \widehat c'est-à-dire les diagonales du losange sont les bissectrices de ses angles.

Propriété 3

Les angles opposés d'un losange ont la même mesure deux à deux.

Preuve

Soit un losange ABCD de centre O. D'après la preuve de la propriété 2 : \widehat = \widehat = \widehat = \widehat \widehat = \widehat = \widehat = \widehat Donc, \widehat = \widehat et \widehat = \widehat.

Propriété 4

Un losange a au moins deux axes de symétrie : ses diagonales.

Preuve

Soit un losange ABCD de centre O. D'après 3. de la propriété 1, les diagonales se coupent en leur milieu (propriété du parallélogramme) et sont perpendiculaires. Donc C est l'image de A par la symétrie d'axe (BD) et D est l'image de B par la symétrie d'axe (AC).

Remarque

La définition du losange comme étant un parallélogramme impose qu'un losange est une figure plane. Il existe des quadrilatères (avec quatre sommets bien distincts) ayant les quatre côtés de même longueur qui ne sont pas des losanges. Il suffit de se placer dans un espace affine euclidien de dimension 3 et de faire subir à un côté d'un "vrai losange" une rotation suivant l'une des ses diagonales.

Aire

Si a et b sont les longueurs des diagonales, alors l'aire du losange est : A=\fraca \times b en effet, les diagonales définissent quatre triangles rectangles qu'il suffit de réagencer pour avoir un rectangle dont les côtés sont a/2 et b (par exemple) ; on applique alors la formule donnant l'aire du rectangle.

Rhomboèdre

Un rhomboèdre est un polyèdre dont les six faces sont des losanges.

Anecdote

« Le Losange » ou « la marque au losange » sont des expressions régulièrement utilisées pour désigner la marque automobile Renault, par analogie à la forme de son logo. Le losange, symbole de vie et de prospérité, est la forme de base de la montre DELANCE, elle même symbole de la puissance créative au féminin. (Giselle Rufer-Delance) Catégorie:Quadrilatère ar:دالتون ast:Rombu az:Romb bg:Ромб bs:Romb ca:Rombe cs:Kosočtverec da:Rombe de:Raute el:Ρόμβος en:Rhombus eo:Rombo es:Rombo et:Romb fi:Neljäkäs gl:Rombo he:מעוין hr:Romb ht:Lozanj hu:Rombusz it:Rombo (geometria) ja:菱形 ka:რომბი ko:마름모 li:Roet lt:Rombas lv:Rombs nds:Ruut nl:Ruit (meetkunde) no:Rombe pl:Romb pt:Losango qu:Puytu ru:Ромб simple:Rhombus sl:Romb sr:Ромб sv:Romb uk:Ромб vi:Hình thoi vls:Rute zh:菱形
Sujets connexes
Espace affine   Espace affine euclidien   Médiatrice   Parallélogramme   Polyèdre   Quadrilatère   Rhomboèdre   Symétrie axiale   Triangle  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^