Escherichia coli

Infos
Escherichia coli, également appelé colibacille ou E. coli., est une bactérie intestinale des mammifères très commune chez l'être humain. Découverte en 1885 par Théodore Escherich, dans des selles de nourrissons, c'est un coliforme fécal généralement commensal. Cependant, certaines souches d’E. coli peuvent être pathogènes.
Escherichia coli

Escherichia coli, également appelé colibacille ou E. coli., est une bactérie intestinale des mammifères très commune chez l'être humain. Découverte en 1885 par Théodore Escherich, dans des selles de nourrissons, c'est un coliforme fécal généralement commensal. Cependant, certaines souches d’E. coli peuvent être pathogènes.

Description

E. coli est un bacille gram négatif de la famille des entérobactéries. C’est un hôte commun de la microflore commensale intestinale de l’Homme et des animaux à sang chaud (mammifères et oiseaux). Son établissement dans le tractus digestif s’effectue durant les premières heures ou journées qui suivent l’accouchement. E. coli constitue alors tout au long de la vie de l’hôte l’espèce bactérienne dominante de la microflore anaérobie facultative de l’intestin. E. coli est sans doute l’organisme vivant le plus étudié à ce jour : en effet, l'ancienneté de sa découverte et sa culture aisée (division cellulaire toutes les 20 minutes à 37 °C dans un milieu riche) en font un outil d'étude de choix. La profusion de publications scientifiques qui la mentionnent en témoigne, et elle joue le rôle de « cheval de labour » dans tous les laboratoires de biologie moléculaire.

Historique

Théodore Escherich, en observant la fréquence des diarrhées néonatales, avait déjà posé la question de l’implication du colibacille dans les entérites. Après la Seconde Guerre mondiale, les connaissances ont convergé pour établir le concept de virulence de certaines souches de E. coli. Dans les années 1950, de nombreuses souches d’E. coli ont été incriminées en tant qu’agent étiologique de diarrhées infantiles. On sait maintenant que certaines souches « spécialisées » d’E. coli sont associées à des pathologies très diverses (y compris extra-intestinales), tant chez l’Homme que chez l’animal ; diarrhées, gastro-entérites, infections du tractus urinaire, méningites, septicémies, « maladie des hamburgers » , le syndrome hémolytique et urémique etc. En prévention, une surveillance des SHU a lieu au , situé dans l’unité de Biodiversité des Bactéries Pathogènes Émergentes à l’Institut Pasteur (France), qui est chargé d’étudier les souches pathogènes. Depuis les années 1950, les bactériologistes ont essayé, grâce aux différences antigéniques de E. coli, de subdiviser l’espèce en sérotypes en immunisant des lapins avec des antigènes somatiques et flagellaires. Le sérogroupage reste la méthode la plus utilisée actuellement. Le sérotype est la combinaison des 2 antigènes, somatique O et flagellaire H, (exemples : O157:H7 et O111:H8), alors que le sérogroupe n'est déterminé que par l’antigène O (exemple : O157, ). Cependant le sérotype n’est pas suffisant pour caractériser les E. coli pathogènes. Chaque sérotype n’est pas nécessairement corrélé à la pathogénicité.

Cycle de vie

Cycle de vie dE. coli E. Stewart et al. PLoS Biology February 2005

Antigènes et sérogroupage

L’antigène somatique O, définissant le sérogroupe, est contenu dans les lipopolysaccharides présents sur la paroi bactérienne des souches à gram négatif. L’antigène flagellaire H est de nature protéique entrant dans la structure du flagelle (cil péritriche) permettant la mobilité de la bactérie. L'antigène K de surface n'est pas toujours présent mais s'il est présent, il bloque l'agglutinabilité de l'antigène O.

Les antigènes somatiques O

Il en existe plus de 150. Les antigènes somatiques sont composés de lipopolysaccharides complexes. Actuellement certains laboratoires d'analyses médicales utilisent l'agglutination avec des sérums pour déterminer le sérogroupe, mais cette technique est limitée par le nombre de plus en plus élevé de sérums à fabriquer, par la présence d'agglutinations croisées entre les antigènes O de E. coli, Shigella et ceux de Salmonella, et par le passage de la consistance crémeuse de la colonie à une consistance rugueuse ayant pour conséquence l’absence de synthèse de l'antigène O. C'est pour cette raison qu'une technique de sérotypage moléculaire a été développée. L'antigène O fait partie du lipopolysaccharide (LPS) de la membrane externe des bactéries à gram négatif. Il contient un grand nombre d’unités répétées d’oligosaccharides de 3 à 6 sucres dont la combinaison détermine la diversité des antigènes O. Les gènes codant les enzymes impliquées dans la synthèse de l’antigène O sont regroupés dans le cluster de gènes rfb. Ce cluster rfb peut être amplifié spécifiquement grâce à un système d’amorces puis, après restriction par l’endonucléase MboII, un profil noté « R » peut être obtenu par électrophorèse, correspondant à un sérogroupe de E. coli (Coimbra et al., 2000). Un profil d’électrophorèse est fonction de l’emplacement des sites de restriction propre à MboII. Ainsi tous les clusters de gènes correspondant à un antigène somatique auront un profil de restriction qui lui est propre. Ce profil R sera ensuite analysé avec le logiciel Taxotron® puis comparé à une base de données, en perpétuel développement. Par exemple, le profil R aura un numéro R111, correspondant au obtenu avec le sérum.

Les antigènes flagellaires H

Les antigènes H ne servent pas à l'identification des E. coli pathogènes mais présentent un grand intérêt au point de vue épidémiologique : l'identité de l'antigène H constitue un élément pour assurer qu'il s'agit d'une même souche. La diversité des antigènes H est due aux différents types de flagelline composant la structure du flagelle. C'est le flagelle qui permet la mobilité bactérienne. Le typage s'effectue également par séro-agglutination, mais n’est développé que dans de très rares laboratoires dans le monde. Cependant, certaines souches perdent leur mobilité et sont classées comme non mobile (NM ou H-). Une technique de sérotypage moléculaire a donc été également développée pour déterminer l'antigène H. L'antigène H est codé par le gène fliC. Les parties N et C terminales de la flagelline sont très conservés et c'est la partie médiane, plus variable, qui donne la spécificité de l'antigène H. Les E. coli immobiles possèdent également le gène fliC mais sont incapables de synthétiser un flagelle fonctionnel. Après amplification et restriction du gène fliC, il est possible de typer l'antigène H en comparant le profil obtenu à une base de données de profil-type (Machado et al, 1998). Par exemple, le profil fliC (noté F) aura un numéro F8, correspondant au type H8 obtenu avec le sérum.

Les antigènes de surface ou d'enveloppe K

Il existe 3 types d'antigène K désignés par les lettres L, A ou B.
- L
'Ag L est le plus fréquent mais est thermolabile (il est détruit en ½ h. à 100°C). Donc le chauffage provoque une perte du pouvoir antigénique, du pouvoir de fixer les agglutinines et du pouvoir de masquer l'Ag O.
- L
'Ag A est rare ; c'est un Ag capsulaire (les E. coli encapsulés sont relativement fréquents dans les infections urinaires). L'Ag A est très thermostable (il faut un autoclavage pour le détruire)
- L
'Ag B est toujours présents chez les E. coli enthéropathogènes de GEI (gastro-entérite infantile). Il a une thermolabilité intermédiaire : après ½ h. à 100°C, il reste toujours de l'Ag B mais l'Ag O peut entrer en contact avec le sérum par "trouage" de l'enveloppe, la fixation de l'agglutinine est toujours positive mais le pouvoir antigénique se perd progressivement (en fonction de la durée de chauffage) .
Différence entre l'Ag B et les Ag A ou L : dans une population homogène sur boite de pétri,
- 80% de colonies + et 20% de colonies - pour A ou L
- répartition homogène dans toute la population pour B

Critères d'identification de E. coli (démarche)

Gros plan sur des E. coli C'est une bactérie de la famille des Enterobacteriaceae ne possédant pas de désaminase, ce qui exclut les genres Proteus, Morganella et Providencia (typiquement ex-tribu des Proteae). Elle fermente le glucose par la voie des acides mixtes (Rouge de méthyle +, VP -) ce qui exclut les genres Klebsiella, Enterobacter, Hafnia et Serratia (typiquement groupe des KEHS, ex-tribu des Klebsielleae). De plus,
- Fermentation du lactose, du mannitol ;
- Production d'indole à partir du tryptophane ;
- Ne possède pas d'uréase ;
- Ne produit pas d' H2S ;
- Incapable d'assimiler le citrate en aérobiose.
-ONPG+
-TDA-
-Uréase-
-Indole +++
-VP-

Génome

Le patrimoine génétique de la souche E coli de laboratoire non pathogène a été entiérement séquencé en 1997. Son génome comprend 4, 6 millions de paires de bases codant environ 4200 protéines. En 2001, le génome d'une souche de E coli entérohémorragique (provoquant la maladie du hamburger) a été séquencé. Il comprend 5, 5 million de paires de bases codant 5400 protéines. L'année suivante, le génome d'une souche de E coli provoquant des infections urinaires (cystite, pylonéphrite) et des méningites néonatales, a été séquencé. Il comprend 5, 2 millions de paires de bases codant 5300 protéines. La comparaison des génomes de ces trois souches de E coli révèle que seulement 40% de leurs gènes sont communs - à titre de comparaison, 99% des gènes de l'Homme et des grands singes sont communs. Ceci témoigne du remarquable potentiel évolutif et de la versatilité de ce taxon bactérien. En effet, les souches de E coli pathogènes ont acquis au cours de l’évolution un répertoire de gènes de virulence, qui leur permettent de coloniser de nouvelles niches écologiques en contournant les mécanismes de défense de l’hôte. L’expression d’un répertoire spécifique de facteurs de virulence est corrélée à une pathologie particulière et permet de définir différents pathovars (voir infra).

Plasticité du génome de E. coli et pathogénicité

Le concept de la pathogénicité bactérienne résultant d’un processus multifactoriel, impliquant une myriade de gènes, dont l’expression est chorégraphiée par des processus de régulation est maintenant bien accepté. L’expression de ces gènes permet une adhésion plus efficace, ou l’invasion des tissus de l’hôte, et permet ainsi la colonisation de niches inaccessibles ou inhospitalières pour les E. coli commensaux. En ce sens, la pathogénicité peut être considérée comme un avantage sélectif, et le succès d’une souche de E. coli en tant que pathogène requiert probablement l’acquisition et la sélection de gènes de virulence, envers des recombinaisons et des transferts génétiques non spécifiques. La plasticité du génome de E. coli est à la base de ce processus. La séquence complète du génome de plusieurs souches de E. coli montre la présence de nombreuses séquences d’insertion (IS), de séquences bactériophagiques, ainsi que d'autres plages de séquences inusuelles qui témoignent de l’extraordinaire plasticité du génome de ce genre bactérien. Ce sont les isolats cliniques de E. coli qui possèdent les plus grands génomes, alors que celui de la E. coli de laboratoire, non pathogène, fait 4, 63 Mb. Il apparaît ainsi que le fossé qui sépare les E. coli commensales des E. coli pathogènes est du à l'acquisition de répertoires de gènes de virulence. Il se pourrait que l’acquisition de ces gènes soit facilitée par une importante aptitude à muter. En effet, plus de 1% des isolats d’
E. coli ou de Salmonella impliqués dans des infections alimentaires sont des « mutateurs » qui présentent une forte tendance à muter, un phénomène corrélé à une déficience dans certains systèmes de réparation de l’ADN. Les gènes de virulence sont le plus souvent localisés sur des éléments génétiques transmissibles comme des transposons, des plasmides ou des bactériophages. De plus, ils peuvent être regroupés sur de grands blocs d’ADN chromosomique appelés « îlots de virulence ».

Escherichia coli, une bactérie commensale et un agent pathogène

Certaines souches spécialisées d’
E. coli sont associées à des pathologies très diverses tant chez l’être humain que chez l’animal ; diarrhées, gastro-entérites, infections du tractus urinaire, méningites, septicémies, etc. Les techniques modernes de la biochimie, de la génétique, de la biologie moléculaire et de la microbiologie cellulaire ont permis d’identifier et d’analyser les mécanismes impliqués dans l’interaction des E. coli pathogènes avec leur hôte. Il est intéressant de constater que malgré la diversité des affections provoquées par les souches d’E. coli pathogènes, toutes ces souches utilisent une stratégie classique d’infection, commune à de nombreux autres agents pathogènes. Comme la plupart des pathogènes des muqueuses, les souches d’E. coli responsables de diarrhées et d'infections extra-intestinales utilisent une stratégie d'infection dont les points clés sont les suivants: colonisation des muqueuses, éventuellement invasion des cellules, multiplication, évasion des défenses de l’hôte, dommages à l’hôte. Pour survivre et se multiplier dans le tractus intestinal, les colibacilles doivent surmonter les premières lignes de défense de l’organisme hôte, à savoir le péristaltisme et l’effet de barrière de la microflore commensale. Cette microflore accapare les nutriments, produit des inhibiteurs et occupe les surfaces des muqueuses. L’effet de barrière est surmonté par les E. coli pathogènes grâce à des mécanismes qui sont connus en termes généraux: la compétition pour les sources de carbone, de fer, d’énergie sous des conditions anaérobies, la production de bactériocines, ainsi qu’un fort taux de croissance. L’étape de colonisation implique aussi la capacité à adhérer à la surface de la muqueuse intestinale. Virtuellement toutes les souches d’entérobactéries pathogènes ou non possèdent des systèmes d’adhésion, et il est bien établi que ce pouvoir d’adhésion est la caractéristique la plus conservée chez les E. coli pathogènes. Les structures bactériennes responsables de l’adhésion aux cellules épithéliales sont des adhésines fimbriaires (fimbriae ou pili) ou afimbriaires. Exposées à la surface des bactéries, ces adhésines interagissent avec des récepteurs de la membrane des cellules cibles. C’est ainsi que des souches d
E. coli pathogènes sont capables en partie grâce à leurs adhésines de coloniser des biotopes qui ne sont normalement peu ou pas colonisés par les E. coli commensales. Par exemple, les E. coli responsables d'infections urinaires déploient des pili « P » (pili associés aux pyélonéphrites) qui reconnaissent des glycolipides à la surface des cellules épithéliales du tractus urinaire. La multiplication est essentielle dans le processus de pathogénicité ; on conçoit en effet qu’une multiplication rapide est un avantage pour la colonisation, ainsi que pour causer des dommages avant que le système immunitaire ne rentre en action. Une multiplication lente, voire son arrêt, peut aussi constituer un avantage dans la persistance des pathogènes qui causent des maladies chroniques. Un autre point essentiel dans le processus de pathogénicité est l’interférence des E. coli pathogènes avec le système immunitaire de l’hôte. On sait par exemple que certains types de lipo-polysaccharides (LPS ; antigène « O ») présentés à la surface des bactéries les protègent de l’action lytique du complément, de la fixation des anticorps et de la phagocytose. Les capsules polysaccharidiques (antigènes « K ») qui sont sécrétées à la surface de certaines souches d’E. coli pathogènes (principalement celles causant des affections extra-intestinales) peuvent participer à l’évasion des défenses de l’hôte. Les capsules K1 et K5, qui comportent des homologies avec des molécules eucaryotes (les adhésines n-CAM et les héparanes), présentent ainsi une faible immunogénicité. Les variations antigéniques de certaines molécules protéiques de surface (comme les pili), peuvent également participer à l’évitement des défenses immunitaires. La première étape de colonisation effectuée, certaines souches pathogènes produisent de puissantes toxines, ces dernières pouvant être responsables à elles seules des dommages infligés à l’hôte. D’autres souches pathogènes détournent à leur avantage des fonctions cellulaires essentielles, afin de survivre et persister. Ainsi, en altérant le cytosquelette cellulaire, elles peuvent adhérer très fortement à la surface cellulaire (on parle d’adhésion « intime »), voire pénétrer dans les cellules des muqueuses et s’y multiplier, telles Shigella flexneri ou Salmonella typhimurium. Sur la base de ces modes d’interaction et des signes cliniques de l’infection, les souches d’E. coli inductrices de diarrhées peuvent être actuellement classées en cinq pathovars: E. colientérotoxigéniques (ETEC), E. coli entéroinvasives (EIEC), E. coli entéropathogènes (EPEC), E. coli entérohémorragiques (EHEC) et E. coli entéroaggrégatives (EAggEC). Outre les E. coli induisant des diarrhées, on distingue aussi le pathovar des E. coli pathogènes extraintestinales (ExPEC) impliquées dans des affections non-intestinales: infections urinaires, méningites, septicémies, mammites... Mécanismes d’interaction des différents pathovars d’E. coli responsables de diarrhées. Après l’étape initiale d’adhésion et de colonisation, les colibacilles développent différentes stratégies ; les ETEC, EAggEC et EHEC produisent des toxines. Les EIEC envahissent la muqueuse colique et induisent une réponse inflammatoire destructrice. Les EPEC et EHEC remanient localement le cytosquelette en adhérant intimement à la membrane cellulaire et détruisent les microvillosités environnantes.

Les E. coli entérotoxigéniques (ETEC)

Les ETEC sont une cause majeure de diarrhée aqueuse aigüe avec déshydratation chez les enfants de bas âge (moins de 3 ans) dans les pays en voie de développement, et sont aussi responsables de la « diarrhée des voyageurs » (ou « turista »). Des ETEC sont également une cause fréquente de diarrhées néonatales souvent fatales chez des animaux d’élevage (veau, mouton, porcelet). Les ETEC colonisent essentiellement la partie proximale de l’intestin grêle, grâce à leurs « facteurs de colonisation » (CFAx et CSx) qui sont des adhésines fimbriaires. Les ETEC n’induisent pas d’altérations histologiques marquées de la muqueuse. Le pouvoir pathogène des ETEC s’explique principalement par la sécrétion des toxines thermostables (ST) et/ou thermolabiles (LT). La toxine LT, après endocytose, ADP-ribosyle la sous-unité alpha de la protéine hétérotrimérique Gs. Il s’ensuit l’hyper-activation de l’adénylate cyclase, l’augmentation de la concentration du second messager AMPc, et la phosphorylation de transporteurs membranaires - particulièrement le « CFTR », le régulateur de la conductance membranaire impliqué dans la mucoviscidose. Cette action se traduit par une sécrétion d’ion chlorure et une inhibition de l’absorption de chlorure de sodium par les cellules intestinales, ce qui provoque la diffusion osmotique d’eau vers la lumière intestinale. L’action des toxines ST est moins connue. En se fixant à leur récepteur à la surface des cellules intestinales (une guanylate cyclase), elles induisent des concentrations accrues en GMPc, ce qui résulte également en l’activation du CFTR, l’altération de l’homéostasie intestinale, et une diarrhée osmotique. Ainsi, c’est l’action des toxines ST et LT qui explique le tableau clinique de l’infection : diarrhée aqueuse peu fébrile, nausées et crampes abdominales.

Les E. coli entéroinvasives (EIEC)

Les EIEC sont responsables de syndromes dysentériques caractérisés par une forte fièvre, des crampes abdominales et des nausées, accompagnés d’une diarrhée aqueuse qui évolue rapidement en une dysenterie (selles contenant du sang et du mucus). Les EIEC ont des caractères biochimiques, antigéniques, génétiques et fonctionnels très proches de ceux des Shigella, et mettent en œuvre un mécanisme de pathogénicité similaire. Les EIEC et les Shigella envahissent la muqueuse intestinale au niveau du colon, s’y multiplient, provoquent la mort cellulaire et déclenchant une intense réaction inflammatoire. Le processus d’invasion est complexe et multifactoriel, sous la dépendance de loci chromosomiques et d’un plasmide de virulence (pInv ; ~220 kb). En ce qui concerne Shigella, le processus d’invasion peut être résumé ainsi: lors du contact avec les cellules épithéliales, les bactéries sécrètent des « invasines » (Ipa), qui interagissent avec la surface cellulaire et provoquent un réarrangement localisé du cytosquelette aboutissant à la pénétration de la bactérie dans la cellule. Une fois en position intracellulaire, la membrane de la vacuole est rapidement lysée grâce à une hémolysine de contact, libérant les bactéries dans le cytoplasme où elles peuvent se multiplier. Puis, les bactéries induisent la polymérisation de l’actine cellulaire à un de leur pôle (grâce à IcsA) pour se mouvoir et se disséminer de cellules en cellules. Le processus d’invasion mis en jeu par les EIEC reste à être élucidé, mais les données actuelles indiquent qu’il est probablement identique à celui de Shigella. Les EIEC et les Shigella élaborent également une ou plusieurs entérotoxines qui seraient impliquées dans l'épisode de diarrhée aqueuse qui précède la dysenterie.

Les E.coli entéropathogènes (EPEC)

Les EPEC sont responsables de gastro-entérites infantiles. On admet généralement que ces colibacilles ne sont pathogènes qu'en-dessous de l'âge de 2 ans. Les principaux sérotypes impliqués sont O111 B4 et O119 B14... Le plus fréquent dans l'UE ces dernières années est l'O111 B4 mais on commence à parler d'autres types. Chez l'adulte, en principe, les E. coli de GEI ne sont pas pathogènes. Certains avancent que certaines diarrhées du voyageur seraient dues à des types d'E. coli particuliers inconnus dans la région où vit le voyageur. Ce n'est que chez les nourrissons en bas-âge que la maladie prend une allure grave et épidémique (surtout et presque uniquement en milieu hospitalier). Il s'agit de diarrhées avec déséquilibre de la balance ionique ; d'où le plus important est de rétablir la balance ionique ; l'antibiothérapie interviendra secondairement.

Les E.coli entérohémorragiques (EHEC)

Les EHEC sont responsables de colites hémorragiques. Le principal réservoir de ces bactéries est le tube digestif des bovins; la contamination humaine se fait par l'intermédiaire d'aliments, principalement la viande de boeuf hachée et le lait cru. Le sérotype O157 est le plus fréquent. Il est responsable d'épidémies. Les EHEC produisent une verotoxine (ou Shiga-toxine) qui peut entraîner un syndrôme hémolytique et urémique (SHU). Des épidémies à EHEC se sont déclarées suite à l'ingestion de viande contaminée et insuffisamment cuite (hamburger). Une épidémie a eu lieu en France en 2005. Les cytotoxines (verotoxines) sont à l'origine de la destruction des cellules intestinales. Les symptômes peuvent aller de la diarrhée simple à une diarrhée sanglante et abondante. Les manifestations sont plus graves chez les enfants de moins de 8 ans et chez les personnes de plus de 65 ans. Le syndrôme hémolytique et urémique (SHU) se manifeste entre autre par une anémie hémolytique, une thrombopénie et une insuffisance rénale aigüe.

Les E.coli entéroaggrégatives (EAggEC)

Jusqu’au début des années 1980, les souches d’E. coli inductrices de diarrhées étaient classées en trois catégories ; les ETEC, les EIEC et les EPEC, ces dernières étant alors caractérisées essentiellement par leur appartenance à des sérotypes distinctifs. Au début des années 1980, il a été constaté que la plupart des souches classées dans les EPEC adhèrent sur des cellules de lignée. Par la suite, trois modes distincts d’adhésion aux cellules ont été décrits : l’adhésion « localisée », l’adhésion « diffuse », et l’adhésion « agrégative », ce qui a permis de différencier un nouveau pathovar d’E. coli diarrhégéniques, les EAggEC. Les EAggEC sont actuellement définies comme des souches qui ne sécrètent pas les entérotoxines LT ou ST, et qui adhèrent aux cellules de culture en formant des images « d’amas de briques » (adhésion agrégative). Il est probable que cette définition inclut des souches non pathogènes ; l’hétérogénéité de ce groupe a d’ailleurs été confirmée par des études épidémiologiques et des infections expérimentales d’adultes volontaires. Néanmoins, les EAggEC sont de plus en plus reconnues comme étant responsables de retards de croissance et de diarrhées persistantes dans les pays en voie de développement ainsi que dans les pays industrialisés. Des fimbriae (AAF/I et AAF/II) responsables de l’adhésion agrégative ont été décrits, mais ils sont présents dans une minorité d’isolats d’EAggEC. Ceci suggère que la colonisation du tractus digestif serait due à un ou plusieurs fimbriae, comme dans le cas des ETEC. Les EAggEC adhèrent sur la muqueuse intestinale, enchâssées dans un biofilm de mucus produit par les cellules en gobelets de la muqueuse. Environ 40 % des souches d’EAggEC produisent l’entérotoxine EAST1 (pour « EAggEC ST-like toxin »), qui présente environ 50 % d’homologie avec la toxine ST des ETEC. La contribution de cette toxine au pouvoir pathogène n’est pas encore établie. Notons aussi que le gène codant la toxine EAST1 ou ses variants a été trouvé dans des souches EPEC et ETEC, ainsi que dans des souches d’E. coli pathogènes ou non, qui ne possèdent pas les gènes marqueurs des pathovars classiques.

Les E.coli pathogènes extraintestinales (ExPEC)

(articles en cours d'écriture, patience !) LA PATIENCE EST D'OR

Prédateur

Escherichia coli étant une bactérie, elle est sensible aux bactériophages comme les phages T4 et lambda.

Voir aussi

Pyélonéphrite

Sources bibliographiques de référence

Kaper JB et al. (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123. ===
Sujets connexes
Accouchement   Animal   Années 1950   Bacille (forme)   Bactériophage   Coliforme   Coloration de Gram   Degré Celsius   Diarrhée   Division cellulaire   Enterobacter   Enterobacteriaceae   Escherichia coli   Flagelle   Flore intestinale   Gastro-entérite   Gram négatif   Homo sapiens   Indole   Intestin   Klebsiella   Lactose   Mammifère   Mannitol   Matière fécale   Méningite   Nourrisson   Pathogène   Pathologie   Proteus (genre)   Pyélonéphrite   Réaction de Voges-Proskauer   Salmonella   Septicémie   Serratia   Souche   Sulfure d'hydrogène   Syndrome hémolytique et urémique   Sérogroupage   Tryptophane   Voies fermentaires des entérobactéries  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^