Spectrométrie de masse

Infos
La spectrométrie de masse (mass spectrometry ou MS) est une technique physique d'analyse permettant de détecter et d'identifier des molécules d’intérêt par mesure de leur masse mono-isotopique. De plus, la spectrométrie de masse permet de caractériser la structure chimique des molécules en les fragmentant. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). La spectrométrie de masse est utilis
Spectrométrie de masse

La spectrométrie de masse (mass spectrometry ou MS) est une technique physique d'analyse permettant de détecter et d'identifier des molécules d’intérêt par mesure de leur masse mono-isotopique. De plus, la spectrométrie de masse permet de caractériser la structure chimique des molécules en les fragmentant. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). La spectrométrie de masse est utilisée dans pratiquement tous les domaines scientifiques : physique, astrophysique, chimie en phase gazeuse, chimie organique, dosages, biologie, médecine...

Structure d'un spectromètre de masse

Schéma de la structure d’un spectromètre de masse : exemple d'un spectromètre de masse à secteur magnétique associé à une source d'ionisation d'impact électronique Le spectromètre de masse, initialement conçu par le britannique Joseph John Thomson, comporte une source d'ionisation suivie d'un ou plusieurs analyseurs qui séparent les ions produits selon leur rapport m/z, d'un détecteur qui compte les ions et amplifie le signal, et enfin d'un système informatique pour traiter le signal. Le résultat obtenu est un spectre de masse représentant les rapports m/z des ions détectés selon l'axe des abscisses et l'abondance relative de ces ions selon l'axe de ordonnées. Le spectromètre de masse se compose donc de quatre parties :
- Le système d’introduction de l’échantillon : l’échantillon peut être introduit directement dans la source, sous forme liquide (infusion directe) ou solide (canne d’introduction directe, dépôt sur plaque MALDI, ...) ou encore par l'association à une méthode séparative (chromatographie en phase liquide, chromatographie en phase gazeuse, électrophorèse capillaire , ...).
- La source d'ionisation: elle consiste à vaporiser les molécules et à les ioniser. Une source d'ionisation peut être utilisée soit en mode positif pour étudier les ions positifs, soit en mode négatif pour étudier les ions négatifs. Plusieurs type de sources existent et sont utilisées en fonction du résultat recherché et des molécules analysées.
- L'ionisation électronique (EI), l'ionisation chimique (CI) et la désorption-ionisation chimique (DCI)
- Le bombardement par atomes rapides (FAB), atomes métastables (MAB) ou ions (SIMS, LSIMS)
- Le couplage plasma inductif (ICP)
- L'ionisation chimique à pression atmosphérique (APCI) et la photoionisation à pression atmosphérique (APPI)
- L'électronébulisation ou électrospray (ESI)
- L'ionisation-désorption laser assistée par matrice (MALDI), activée par une surface (SELDI) ou sur silicium (DIOS)
- L'ionisation-désorption par interaction avec espèces métastables (DART)
- L’analyseur : permet de séparer les ions en fonction de leur rapport masse/charge (m/z). Il existe des analyseurs basse résolution : le quadripôle ou quadrupôle (Q), le piège à ions 3D (IT) ou linéaire (LIT), et des analyseurs haute résolution, permettant de mesurer la masse exacte des analytes : le secteur magnétique couplé à un secteur électrique, le temps de vol (TOF), la résonance cyclotronique ionique à transformée de Fourier (FTICR) et l'Orbitrap. Ces analyseurs peuvent être couplés entre eux pour réaliser des expériences de spectrométrie de masse en tandem (MS/MS). En général, un premier analyseur sépare les ions, une cellule de collision permet de fragmenter les ions, et un second analyseur sépare les ions fragments. Certains analyseurs, comme les pièges à ions ou le FT-ICR, constituent plusieurs analyseurs en un et permettent de fragmenter les ions et d'analyser les fragments directement.
- Le détecteur et système de traitement : le détecteur transforme les ions en signal électrique. Plus les ions sont nombreux, plus le courant est important. De plus, le détecteur amplifie le signal obtenu pour qu'il puisse être traité informatiquement.

A quoi sert la spectrométrie de masse ?

- Identification :
- Suivant le type d'ionisation utilisé, un spectre de masse peut être caractéristique d'une molécule. Ainsi en le comparant avec des banques de spectres, il est possible d'identifier la molécule.
- Lors de l'utilisation d'un analyseur haute résolution (TOF, secteur magnétique, FTICR, Orbitrap), la spectrométrie de masse permet de mesurer avec précision la masse monoisotopique d'un ion et d'en déduire sa formule brute.
- Analyse structurale :
- La parité de la masse mesurée est fonction de la parité du nombre d’atomes d’azote que possède une molécule (règle de l’azote).
- Chaque atome possède un ou plusieurs isotopes qui sont de masses différentes par définition. Ainsi, la proportion de chaque isotope observé sur un spectre de masse, c'est-à-dire le massif isotopique, est caractéristique de la présence de certains atomes et de leur nombre dans l'ion mesuré (en particulier : Cl, Br, qui présentent des isotopes M et M+2 en quantité notable).
- Les ions peuvent se fragmenter dans un spectromètre de masse : dans la source d'ionisation, dans l'analyseur ou dans une cellule de collision. Comme les fragmentations respectent des lois précises de chimie en phase gazeuse, l'étude de ces fragments permet de déterminer la structure des ions.
- Quantification :
- Un spectromètre de masse est un détecteur universel et très sensible. Sa gamme linéaire va de 3 à 7 ordres de grandeur, d'où la possibilité d'obtenir une quantification fiable sur un domaine large.

La source d'ionisation

Les ionisations EI et CI, qui nécessitent un certain niveau de vide, sont préférentiellement utilisées en couplage avec la chromatographie en phase gazeuse (la CI fonctionnant à partir d'une source EI). En revanche, les deux sources à pression atmosphérique (électrospray et APCI) dites à "ionisation douce", sont principalement utilisées en couplage avec la chromatographie en phase liquide.

L'ionisation électronique (EI)

Des électrons émis par un filament rencontrent les molécules qui entrent dans la source : lors de la rencontre, si l'énergie cinétique des électrons est suffisante, un électron est arraché de la molécule M, la transformant en un ion radical M+°. Celui-ci peut ensuite se fragmenter suivant son énergie interne. L'EI conduit ainsi à un spectre assez fourni, avec de nombreux fragments, très riche en informations structurales.

L'ionisation chimique

En plus du dispositif EI ci-dessus, un gaz réactif est introduit dans la source et ionisé par impact électronique. S'ensuit une série de réactions qui donne naissance à des ions pouvant réagir avec les molécules d'analyte arrivant dans la source. Ce type de réactions ions-molécules produit principalement (en mode positif) des ions + et +, permettant ainsi d'accéder à la masse moléculaire de l'analyte. Le méthane, l'isobutane et l'ammoniac sont parmi les gaz d'ionisation chimique les plus utilisés.

L'électrospray

Son principe est le suivant : à pression atmosphérique, les gouttelettes de solutés sont formées à l'extrémité d'un fin capillaire de silice, métallisé en surface et porté à un potentiel élevé. Le champ électrique intense leur confère une densité de charge importante. Sous l'effet de ce champ et grâce à l'assistance éventuelle d'un courant d'air co-axial, l'effluent liquide est transformé en nuage de fines gouttelettes (spray) chargées suivant le mode d'ionisation. Sous l'effet d'un second courant d'air chauffé, les gouttelettes s'évaporent progressivement en perdant des molécules de solvant par des mécanismes complexes de désolvatation et d'évaporation. Leur densité de charge devenant trop importante, les répulsions électriques atteignant le niveau des tensions superficielles, les gouttelettes explosent en libérant des microgouttelettes constituées de molécules protonées ou déprotonées de l'analyte, porteuses d'un nombre de charges variable. Les ions ainsi formés sont ensuite guidés à l'aide de potentiels électriques appliqués sur deux cônes d'échantillonnage successifs faisant office de barrières avec les parties en aval maintenues sous un vide poussé ( 3 décades). L’orbitrappe est principalement utilisée en spectrométrie de masse en tandem, associée à un piège linéaire

L'analyseur à secteur magnétique

L'ion est éjecté dans un milieu dans lequel règne un champ magnétique uniforme perpendiculaire au plan de la trajectoire. Du fait de la force de Lorentz, la trajectoire se courbe, et le point d'impact de l'ion (donc sa déviation) permet de connaître sa masse à partir de la charge. En effet, soit \vec B\, le champ magnétique (dirigeant \overrightarrow) de coordonnées \begin 0 \\ 0 \\ B \end et \vec v_0\, la vitesse initiale orthogonale à \vec B\, , elle dirige \overrightarrow. On a alors: q \vec v \wedge \vec B = \begin qB\dot y \\ -qB \dot x \\ 0 \end. D'où, en écrivant la relation fondamentale de la dynamique : \left\\begin m \ddot x =qB \dot y \\ m \ddot y = -qB \dot x \end\right.. Soit: \left\\begin \ddot x -\omega_0\dot y =0 \\ \ddot y + \omega_0\dot x=0 \end\right. où \omega_0=\frac. Posons \tilde V=\dot x + i\dot y. On a alors \dot \tilde V + i\omega_0\tilde V=0. En résolvant, \tilde V(t) =v_0 e^-i\omega_0t=v_0cos(\omega_0t) - v_0isin(\omega_0t) . Et donc: \left\\begin \dot x(t) =v_0cos(\omega_0t) \\ \dot y(t) =-v_0sin(\omega_0t)\end\right. \left\\begin x(t) =\frac\omega_0sin(\omega_0t) \\ y(t) =\frac\omega_0cos(\omega_0t) -\frac\end\right. (à l'aide des conditions initiales). Il s'agit bien de l'équation paramétrique d'un cercle de rayon R_c=\frac\left|qB\right|. Le spectromètre mesure ensuite les distances d'impact lorsque la particule a effectué un demi-cercle. La distance au point d'origine correspond au diamètre donc au double du rayon donné par la dernière formule. La charge de la particule permet donc d'en déduire sa masse.

La spectrométrie de masse en tandem (MS/MS)

La spectrométrie de masse en tandem consiste à sélectionner un ion par une première spectrométrie de masse, à le fragmenter, puis à effectuer une deuxième spectrométrie de masse sur les fragments ainsi générés. Elle peut être réalisée à l'aide de nombreux appareils combinant des secteurs magnétiques, électriques, quadripolaires ou des temps de vol, mais également au sein d'un même analyseur dans le cas d'une trappe d'ions.

Le triple quadripôle

Un triple quadripôle résulte de l'association de deux analyseurs quadripolaires en série, séparés par une cellule de collision souvent constituée d'un quadripôle plus court. Cette combinaison de quadripôles permet de travailler en MS simple ou en tandem. Pour réaliser une acquisition en MS, il suffit de n'appliquer qu'une tension alternative à l'un des analyseurs pour le rendre "transparent" comme la cellule de collision, celle-ci ne contenant alors pas de gaz. Lors d'une acquisition en MS/MS, la cellule de collision est remplie d'un gaz inerte (argon par exemple) sous une pression relativement élevée (10^ torr). L'énergie cinétique de l'ion sélectionné est convertie lors de ses collisions successives en énergie interne. La dissociation de l'ion se réalisera lorsque son énergie interne sera devenue supérieure à l'énergie d'activation nécessaire à la fragmentation. Cette technique de dissociation activée par collision (CAD) peut être amplifiée en augmentant l'énergie cinétique des ions sélectionnées par application d'une différence de potentiel entre la source et la cellule de collision. L'analyse MS/MS peut être menée selon quatre modes différents selon l'information recherchée : le mode descendant est le plus utilisé pour obtenir des informations structurales, les deux modes (ascendant et perte de neutre) sont d'un usage plus restreint et permettent de mettre en évidence des ions ayant des particularités communes. Le quatrième mode (Multiple Reaction Monitoring ou MRM), dérivé du mode descendant, est voué à la quantification.
-en mode descendant, l'ion à étudier est sélectionné en focalisant le premier analyseur sur son rapport m/z. Les fragments formés dans la cellule de collision sont séparés par le deuxième analyseur et analysés. Le spectre obtenu présente à la fois l'ion précurseur (ou ion parent) et ses ions fragments (ou ions produits).
-en mode ascendant, le premier analyseur balaie une gamme de masse tandis que le deuxième est focalisé sur un seul rapport m/z. Tous les ions générés en source et capables de donner un fragment de même rapport m/z seront donc ainsi détectés.
-en mode perte de neutre, les deux analyseurs balaient une gamme de masse simultanément et avec un décalage de masse constant. Le spectre établi présentera alors tous les ions parents capables de se fragmenter en générant un neutre de masse égale au décalage imposé.
-en mode MRM, l'ion parent à étudier est sélectionné par le premier analyseur et fragmenté dans la cellule de collision, comme en mode descendant. En revanche, le second analyseur est focalisé sur l'ion produit. Ce mode de fonctionnement présente une double sélectivité, au niveau des sélections de l'ion parent et de l'ion produit. En outre les deux analyseurs étant fixées à des tensions constantes, la sensibilité de détection est améliorée par rapport à d'autres modes de balayage, faisant de la MRM un mode de choix pour la quantification.

MS^n en piège quadripolaire ("trappe d'ions")

Au sein d'un piège quadripolaire ("trappe d'ions"), l'analyse en tandem se réalise dans un premier temps par sélection d'ions dont la valeur m/z est choisie. Ces ions piégés vont ensuite se fragmenter par collision (acquisition d'énergie interne, excitation vibrationnelle) à l'aide d'une tension RF (radiofréquence) correspondant à leur fréquence de résonance, et les ions produits formés sont à leur tour piégés. Une éjection sélective en masse des ions produits (fragments) peut alors être réalisée en vue de leur analyse. L'obtention d'ions de générations supérieures est possible par simple renouvellement du processus (sélection d'un ion produit, fragmentation, sélection d'un ion produit de 2 génération, fragmentation, etc...). Cette séquence est appelée MS^n, n étant le nombre de générations d'ions. Ainsi la MS^2 est la MS-MS et ainsi de suite...

Tof Tof

Hybride : Quadripôle Tof

Ces appareils permettent de combiner les points forts des analyseurs quadripôles et des Tofs. Il sont constitués d'un double quadripôle (1 analyseur et cellule de collision) et d'un analyseur à temps de vol comme second analyseur. Les avantages par rapport à un triple quad sont une meilleure sensibilité et une meilleure résolution.

Voir aussi

- Biophysique
- Spectrométrie
- IA-Mass ==
Sujets connexes
Acide cinnamique   Biophysique   Charge élémentaire   Chimie analytique   Chromatographie en phase gazeuse   Force de Lorentz   Formule brute   Ionisation   Joseph John Thomson   Masse   Peptide   Pièges à ions de Paul et de Penning   Protéine   Spectre (physique)   Spectromètre   Spectrométrie de masse   Spectrométrie de masse à ionisation secondaire  
#
Accident de Beaune   Amélie Mauresmo   Anisocytose   C3H6O   CA Paris   Carole Richert   Catherinettes   Chaleur massique   Championnat de Tunisie de football D2   Classement mondial des entreprises leader par secteur   Col du Bonhomme (Vosges)   De viris illustribus (Lhomond)   Dolcett   EGP  
^